

XCubeSAN Series White Paper

Auto Tiering 2.0

QSAN Technology, Inc. www.QSAN.com

Copyright

© Copyright 2018 QSAN Technology, Inc. All rights reserved. No part of this document may be reproduced or transmitted without written permission from QSAN Technology, Inc.

January 2018

This edition applies to QSAN XCubeSAN series. QSAN believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.

Trademarks

QSAN, the QSAN logo, XCubeSAN, and QSAN.com are trademarks or registered trademarks of QSAN Technology, Inc.

Microsoft, Windows, Windows Server, and Hyper-V are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries.

Linux is a trademark of Linus Torvalds in the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Mac and OS X are trademarks of Apple Inc., registered in the U.S. and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

VMware, ESXi, and vSphere are registered trademarks or trademarks of VMware, Inc. in the United States and/or other countries.

Citrix and Xen are registered trademarks or trademarks of Citrix Systems, Inc. in the United States and/or other countries.

Other trademarks and trade names used in this document to refer to either the entities claiming the marks and names or their products are the property of their respective owners.

Notices

This XCubeSAN series white paper is applicable to the following XCubeSAN models:

Model Name	Controller Type	Form Factor, Bay Count, and Rack Unit
XS5224D	Dual Controller	LFF 24-disk 4U Chassis
XS3224D	Dual Controller	LFF 24-disk 4U Chassis
XS3224S	Single Controller	LFF 24-disk 4U Chassis
XS1224D	Dual Controller	LFF 24-disk 4U Chassis
XS1224S	Single Controller	LFF 24-disk 4U Chassis

XCubeSAN Storage System 4U 19" Rack Mount Models

XCubeSAN Storage System 3U 19" Rack Mount Models

Model Name	Controller Type	Form Factor, Bay Count, and Rack Unit
XS5216D	Dual Controller	LFF 16-disk 3U Chassis
XS3216D	Dual Controller	LFF 16-disk 3U Chassis
XS3216S	Single Controller	LFF 16-disk 3U Chassis
XS1216D	Dual Controller	LFF 16-disk 3U Chassis
XS1216S	Single Controller	LFF 16-disk 3U Chassis

XCubeSAN Storage System 2U 19" Rack Mount Models

Model Name	Controller Type	Form Factor, Bay Count, and Rack Unit
XS5212D	Dual Controller	LFF 12-disk 2U Chassis
XS5212S	Single Controller	LFF 12-disk 2U Chassis
XS3212D	Dual Controller	LFF 12-disk 2U Chassis
XS3212S	Single Controller	LFF 12-disk 2U Chassis
XS1212D	Dual Controller	LFF 12-disk 2U Chassis
XS1212S	Single Controller	LFF 12-disk 2U Chassis
XS5226D	Dual Controller	SFF 26-disk 2U Chassis
XS5226S	Single Controller	SFF 26-disk 2U Chassis
XS3226D	Dual Controller	SFF 26-disk 2U Chassis
XS3226S	Single Controller	SFF 26-disk 2U Chassis
XS1226D	Dual Controller	SFF 26-disk 2U Chassis

|--|

Information contained in document has been reviewed for accuracy. But it could include typographical errors or technical inaccuracies. Changes are made to the document periodically. These changes will be incorporated in new editions of the publication. QSAN may make improvements or changes in the products. All features, functionality, and product specifications are subject to change without prior notice or obligation. All statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products.

All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

Table of Contents

Notices	i
Auto Tiering 2.0	1
Executive Summary	1
Audience	2
Overview	2
Tier Categories	
Flexible RAID and Disk Configurations	5
Theory of Operation	5
Auto Tiering Architecture	6
Intelligent Auto Tiering Mechanism	7
Tiering Policies	9
Configure Auto Tiering Pools	11
Enable Auto Tiering License	12
Create an Auto Tiering Pool	12
List Auto Tiering Pools	
Operations on Auto Tiering Pools	
Add a Tier (Disk Group) in an Auto Tiering Pool	
Hot Spares in an Auto Tiering Pool	
Configure Volumes	
Create a Volume in an Auto Tiering Pool	
List Volumes and Operations on Volumes	
Configure LUN Mappings and Connect by Host Initiator	
Transfer to Auto Tiering Pool	
Transfer from Thick Provisioning Pool to Auto Tiering	
Transfer from Thin Provisioning Pool to Auto Tiering	
SSD Cache vs. Auto Tiering	
Best Practice	
Configuration Planning Advice	
Case 1: Video Editing	
Case 2: VMware	50
Case 3: Sudden Reaction	
Auto Tiering Notices	
Conclusion	63
Apply To	63
Reference	63
Appendix	64

Related Documents64	4
Гесhnical Support64	4

Auto Tiering 2.0

Executive Summary

QSAN auto tiering cost-effectively and dynamically places hot data on SSD or faster hard drives and cold data on lower cost high-capacity drives, allowing you to optimize application performance without straining your budget or sacrificing capacity.

Our algorithm uses intelligent data analysis that continuously monitors data usage and ranks this data based on how often it is accessed. It will then use this information and make a decision on where your data should be.

The intuitive SANOS 4.0 web UI interactively shows the data being gathered; how this data is being used, and how much of each tier storage should be assigned based on this information. Then at the scheduled time, the most accessed blocks that have been marked as "hot" data will be migrated into the highest performing tier, the least accessed or "cold" data will be migrated into the lowest cost - highest capacity drive tier.

All of this is managed in the background without user intervention. This tiered pool will also function the same as any standard QSAN pool, and access to our enterprise features such as snapshot and remote replication remains unchanged. This intelligent movement of data will allow the highest performance for the data you use the most, while keeping the total cost of ownership low and taking the burden of data management away from the IT organization.

Auto tiering is a feature available on XCubeSAN series and requires license to activate. This document discusses the Auto tiering technology and describes its features, functions, management, and best practice.

INFORMATION:

Auto tiering 2.0 with flexible RAID and disk configurations is available in SANOS firmware 1.2.0.

Audience

This document is applicable for QSAN customers and partners who are familiar with QSAN products and considering using auto tiering function. Any settings which are configured with basic operations will not be detailed in this document. If there is any question, please refer to the user manuals of products, or contact QSAN support for further assistance.

Overview

From the perspective of storage features, the performance of SSDs are high, but the cost is also high per GB. Relatively speaking, the cost of a traditional hard drive is low, so as performance is relatively poor. If we follow the 80/20 rule to configure storage systems, all-SSD configurations are unreasonable for all but the most intensive applications. In fact, SSD will be needed in only a small part for most typical applications, regardless of whether or not a critical application, thus giving SSD resources for general storage needs is hugely cost-prohibitive. Although traditional hard disk performance is enough for general applications which I/O requirements are not high, the traditional all-hard-drive configuration is also gradually been inadequate.

On the other hand, the data itself has a lifecycle. Since the data in the course of its life cycle, it has experienced different levels of activity. In common usage, when creating the data, it is usually used. As the age of the data increases, it is accessed less often.

The Solution

Therefore, to balance performance and cost factors, adapting hybrid storage architecture with a mixture of SSDs and traditional HDDs seem to be the most reasonable approach for modern IT environments. Generally, SSD-based storage capacity in 10 to 15% of the total storage capacity should be enough to fulfill the requirements of critical high I/O applications. An automated tiering pool is a simple and elegant solution for dynamically matching storage requirements with changes in the frequency of data access.

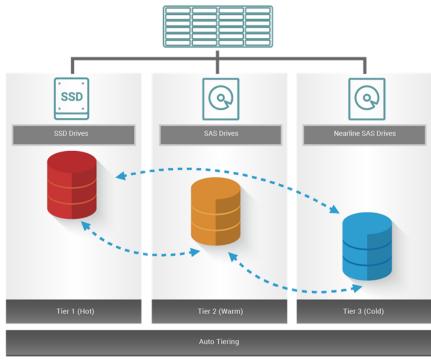


Figure 1 Auto Tiering Pool

Tier Categories

As the name suggestion, auto tiering must have two tiers at least. Automated tiering pool segregated disk drives into three categories for dual controllers and four for single controller.

- Tier 1: SSD drives for extreme performance tier
- Tier 2: SAS drives (15K or 10K RPM SAS HDD) for performance tier
- Tier 3: Nearline SAS drives (7.2K or lower RPM SAS HDD) for capacity tier
- Tier 4: SATA drives for capacity tier (for single controller only, not recommended)

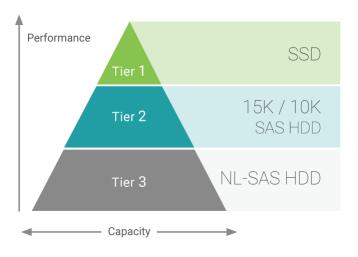


Figure 2 3 Levels of Tiered Storage

Tier 1 / SSD Tier / Extreme Performance Tier

Use the SSD tier when response time and performance are the most important criteria for storage. This tier uses flash technology that does not contain moving parts. This revolutionary technology eliminates the rotation latencies and can improve performance and save energy significantly.

Compared to traditional spinning drives, SSD drives have higher cost per gigabyte, but lower per IO cost. For the best practice, use the SSD drive to get data that requires fast response time and high IOPS. Auto tiering enables you to optimize the use of these high-performance resources because it automatically relocates "hot" data to the SSD tier.

Tier 2 / SAS HDD Tier / Performance Tier

Use the SAS HDD tier to achieve a combination of performance and capacity. The SAS HDD tier provides high levels of performance, reliability, and capacity. SAS HDD stores data on a series of fast rotating disks based on mechanical hard disk drive technology.

This tier includes 15K and 10K RPM spinning drives, which are valuable because it provides a high level performance with consistent response time, high throughput and good bandwidth at moderate price.

Tier 3 / NL-SAS HDD Tier / Capacity Tier

Use the NL-SAS HDD tier to reduce the cost per GB of data. This tier consists of 7.2K or lower RPM SAS HDD which is designed to achieve the maximum capacity at an appropriate performance level. While NL-SAS HDDs have slower speeds than SAS HDDs, NL-SAS HDDs

can significantly reduce power consumption and extend capacity in more expensive and higher performance storage tiers.

In a typical system, most of the application data has very little I/O activity. Because NL-SAS HDDs cost less per GB, they are the most appropriate media type for the "cold" data. NL-SAS HDDs consume less power than SAS HDDs and provide total cost of ownership improvement that take into purchase cost.

Flexible RAID and Disk Configurations

Auto Tiering 2.0 supports flexible RAID and disk configurations. You can create each tier (disk group) with different RAID levels and different a quantity of disks. For example, SSD tier uses 4 disks with RAID 10 for extreme performance, SAS tier uses 6 disks with RAID 6, and NL-SAS tier uses 8 disks with RAID 5 for capacity. This feature is very important for IT administrators to arrange storage plans flexibly.

RAID Configuration		
Please select RAID levels. SSD Tier		
RAID Level :	RAID 10	•
Quantity of Subgroups :	2	•
Quantity of SSD Disks : SAS Tier	4 Disk(s)	
RAID Level :	RAID 6	•
Quantity of SAS Disks : NL-SAS Tier	6 Disk(s)	
RAID Level :	RAID 5	•
Quantity of NL-SAS Disks :	8 Disk(s)	

Figure 3 Flexible RAID and Disk Configurations

Theory of Operation

Auto tiering is the automated progression or demotion of data across different tiers (types) of storage devices and media. The movement of data takes place in an automated way with the help of software and is assigned to the ideal storage media according to performance and capacity requirements. It also includes the ability to define rules and policies that

dictate if and when data can be moved between the tiers, and in many cases provides the ability to pin data to tiers permanently or for specific periods of time.

Auto Tiering Architecture

A newly created auto tiering pool is based on thin provisioning technology. Each tier works based on one or more disk groups. The following is the storage architecture of an auto tiering pool.

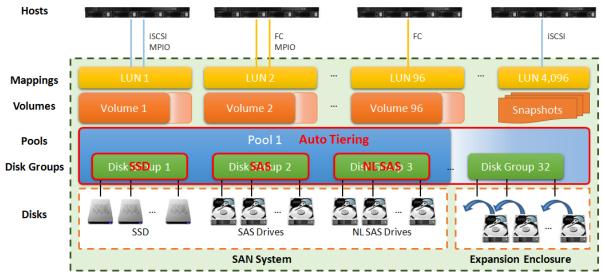


Figure 4 Storage Architecture of Auto Tiering Pool

To increase the capacity of an auto tiering pool, any tier (disk group) which contains either one tier of SSDs, SAS HDDs, or NL-SAS HDDs can be added to the pool any time. An auto tiering pool can have up to 32 disk groups with each disk group contains up to 64 disk drives. And the maximum disk drive quantity in a pool is 256. The maximum addressable capacity of each disk group is 64TB. So the maximum capacity in a system is 256TB. For more information about pool operation, please refer to the <u>Configuring Auto Tiering Pools</u> section.

Table 1	Auto Tiering Pool Parameters		
Item		Value	
Maximur	n disk group quantity in a pool	32	
Maximur	n disk drive quantity in a disk group	64	
(include	dedicated spares)		

Maximum disk drive quantity in a pool	256
(include dedicated spares)	
Maximum pool quantity per system	64
Maximum dedicated spare quantity in a pool	8
Maximum tiers	3
(include SSD, SAS HDD, NL-SAS HDD)	
Maximum addressable capacity of a disk group	64TB
Maximum addressable capacity of an auto tiering pool	256TB
Maximum addressable capacity of total auto tiering pools	1,024TB
(include thin provisioning pools)	
Provisioning granularity	1GB

By design, the auto tiering feature allows selecting policies that define how data are moved between different tiers, and in many cases provides the ability to pin data to tiers permanently or for specific periods of time.

Auto tiering storage is the assignment of different categories of data to different disk types. It operates based on relocating the most active data up to the highest available tier and the least active data down to the lowest tier. Auto tiering works based on an allocation unit (granularity) of 1GB and relocates data by moving the entire unit to the appropriate tier, depending on the tiering policy selected for that particular volume.

In order to ensure sufficient space in the higher tiers, 10% of the space is reserved in each higher tier to prepare for the data allocation for those tiering policies which would allocate initial space in highest available tiers. By reclaiming this 10% headroom, the least active units within each tier move to lower tiers. The whole mechanism of auto tiering contains three steps, statistic collection by accessed counts, ranking hotness data by the statistic collection, and then relocation data via ranking.

Intelligent Auto Tiering Mechanism

Auto tiering storage management system manages the data relocation and monitors the data hotness ratio using half-life coefficient and advanced ranking algorithm. It operates on three major functions.

Statistics Collection

The volume space is divided into units of equal size in which the hotness is collected and analyzed per hour. This is also called sub LUN. Activity level of a sub LUN is determined by counting the quantity of read and write access on the sub LUN. Logical volume manager maintains a cumulative I/O count and weights each I/O by how recently it arrived. The new coming I/O is given a full weight. After approximately 24 hours, the weight of this IO is nearly cut in half and continues to decrease. The reduction weight is processing per hour by our precision algorism. This statistics collection occurs continuously in the background for auto tiering pool.

Ranking

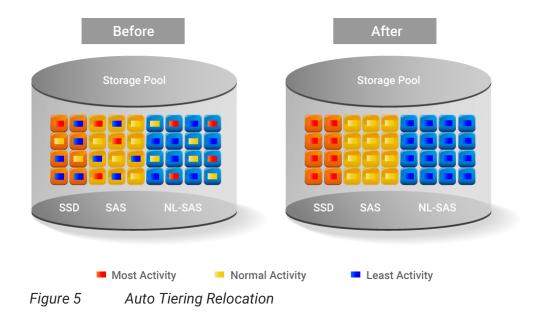
This analysis produces a rank ordering of each sub LUN within the pool. Note that the policies of volumes would affect how sub LUNs are ranked.

After analysis, the system would generate following information for each tier:

- The amount of data to be moved up
- The amount of data to be moved down
- The amount of data to be moved into a tier.

TIP:

The hotness analysis process which includes statistics collection and ranking may take minutes to complete.


Relocation

According to the hotness analysis, relocation is processed during the user-defined relocation window, which is the number of minutes given to the relocation process. When the window closes, the relocation process would stop relocating data. The other parameter is relocation rate which controls speed of the relocation process. Valid value of relocation rate is Fast, Medium, and Slow.

Auto tiering promotes sub LUNs according to the candidate list that it created in the analysis stage. During relocation, it prioritizes relocating sub LUNs to higher tiers. At the same time, sub LUNs are only relocated to higher tiers if the space they occupy is required for a higher priority. Using the mechanism, auto tiering makes sure that the higher performing drives are always used.

During I/O, as data is written to a pool, auto tiering attempts to move it to the higher tiers if space is available and the tiering policy allows for it. As we describe before, the relocation process will keep 10% of the free space in all tiers. This space is reserved for any new allocations of higher priority sub LUNs before the next relocation. Lower tiers are used for capacity when needed. The entire relocation process is complete automatically based on the user-defined relocation schedule, or manually if user triggers by himself. The following figure provides an illustration of how auto tiering can improve sub LUN placement in a pool.

Tiering Policies

For the best performance in various environments, auto tiering has a completely automated feature that implements a set of tiering polices. Tiering policies determine how new allocations and ongoing relocations should apply within a volume for those requirements. Auto tiering uses an algorithm to make data relocation decisions based on the activity level of each unit. It ranks the order of data relocation across all volumes within each separate pool. The system uses this information in combination with the tiering policy per volume to create a candidate list for data movement. The following volume policies are available:

Auto Tiering (Default)

It allows moving a small percentage of the "hot" data to higher tiers while maintaining the rest of the data in the lower tiers. This policy automatically relocates data to the most appropriate tier based on the activity level of each data. Sub LUNs are relocated based on

the highest performance disk drives available and its hotness. Although this setting relocates data based on the performance statistics of the volume, the volume sets with "Highest available Tier" take precedence. Initial space is allocated in the tier which is healthier and has more free capacity than other tiers, then relocated according to hotness of the data. This is the recommended policy and it is the default policy for each newly created volume.

Start Highest then Auto Tiering

This takes advantage of the both "Highest Available Tier" and "Auto Tiering" policies. "Start Highest then Auto Tiering" sets the preferred tier for initial data allocation to the highest performing disks with available space, and then it relocates the volume's data based on the performance statistics and the auto-tiering algorithm. With this tiering policy, less active data is moved to lower tiers, making room for more active data in the higher tiers. Initial space is allocated in highest available tier first, then relocated according to hotness of the data.

Highest Available Tier

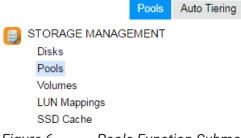
Use this policy when quick response times are a priority. This tier is effective for volumes which require high levels of performance whenever they are accessed. The policy starts with the "hottest" first and places them in the highest available tier until the tier's capacity or performance capability limit is hit. Then it places the sub LUNs into the second higher tier. Initial space is allocated in highest available tier. Auto tiering would prioritize sub LUNs with highest available tier selected above all other settings.

Lowest Tier

Use this policy when cost effectiveness is the highest priority. With this policy, data is initially placed on the lowest available tier with capacity. Select this policy for volumes that are not performance sensitive or response-time sensitive. Regardless of their activity level, all sub LUN of these volumes will remain on the lowest storage tier available in their pool. Data of volumes with "Lowest tier" policy would always reside in the lowest tier. Changing policy of a volume with data in higher tiers to "Lowest tier" would cause all its data in higher tier to be relocated down to the lowest tier.

No Data Movement

If a volume is configured with this policy, no sub LUN provisioned to the volumes is relocated across tiers. Data remains in its current position, but can still be relocated within


the tier. The system still collects statistics on these sub LUNs after the tiering policy is changed. Initial space is allocated in the tier which is healthier and has more free capacity than other tiers. No relocation would be performed in a volume which selects "No data movement" tiering policy.

The following table summarizes the tiering policies.

Table 2 Summary of Tiering Policies				
Tiering Policy	Description			
Auto Tiering	Sets the initial data placement to the optimized tier (disk group) and then relocates the data based on the statistics such that data is relocated among tiers according to the I/O activity.			
Start Highest then Auto Tiering	First sets the preferred tier for the initial data placement to the highest tiers with available space, then relocates the data based on the statistics and the auto tiering algorithm.			
Highest Available Tier	Sets the preferred tier for the initial data placement to the highest tiers with available space, and so as the succeeding data relocation.			
Lowest Tier	Sets the preferred tier for the initial data placement to the lowest tiers with available space, and so as the succeeding data relocation.			
No Data Movement	Sets the preferred tier for the initial data to the optimized tier, and retains the data without movement.			

Configure Auto Tiering Pools

This section will describe the operations of configuring auto tiering pool.

Figure 6 Pools Function Submenu

Enable Auto Tiering License

The auto tiering function is optional. Before using it, you have to enable auto tiering license. Select the **Update** function tab in the **Maintenance** function submenu, download **Request License** file and send to your local sales to obtain a License Key. After getting the license key, click the **Choose File** button to select it, and then click the **Apply** button to enable. When the license is enabled, please reboot the system. Each license key is unique and dedicated to a specific system. If you have already enabled, this option will be invisible.

Auto Tiering License	
Download Request License file and send to your local	sales to get a License Key.
Select the license file to enable Auto Tiering:	Choose File No file chosen
Apply Request License	

Figure 7 Enable Auto Tiering License

Create an Auto Tiering Pool

Here is an example of creating an auto tiering pool with 3 tiers, each tier has 3 disks configured in RAID 5. At the first time of creating an auto tiering pool, it may contain at least 2 tiers (disk groups) and the maximum quantity of disk in a tier (disk group) is 8.

1. Select the **Pools** function submenu, click the **Create Pool** button. It will scan available disks first.

TIP:

It may take $20 \sim 30$ seconds to scan disks if your system has more than 200 disk drives. Please wait patiently.

Create Pool						
Create Pool General Disk Selection RAID Configuration Disk Properties Summary	Pool Type Please select a pool type Thick Provisioning Thin Provisioning Auto Tiering (Thin Properties) Please enter a pool name Pool Name : Preferred Controller : The I/O resources with	ovisioning Enabled) le and select preferre Pool-3 Controller 1	d controller setting.	nich you specified.		
					Next Car	ncel

Figure 8 Create an Auto Tiering Pool Step 1

- 2. Select the **Pool Type** as Auto Tiering (Thin Provisioning Enabled). This option is available when auto-tiering license is enabled.
- 3. Enter a **Pool Name** for the pool. The maximum length of the pool name is 16 characters. Valid characters are [A~Z | a~z | 0~9 | -_<>].
- 4. Select a **Preferred Controller** from the drop-down list. The backend I/O resources in this pool will be processed by the preferred controller which you specified. This option is available when dual controllers are installed.
- 5. Click the **Next** button to continue.

General	Selec	t Disks						
Disk Selection			two disk	types of disk	to add tiers ar	n auto tiering pool. Each ti	ier is a disk group.	The maximum quantity of dis
RAID Configuration	disk g	roup is 64.						
Disk Properties	Enclo	sure ID:	0 (Head	Unit: XS52	16)	*		
Summary		Enclosure ID	Slot	Health	Capacity	Disk Type	Manufacturer	Model
Summary		0	1	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
		0	2	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
		0	3	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
		0	4	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
		0	5	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
		0	6	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
		0	7	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
		0	8	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
		0	9	Good	1.09 TB	SAS HDD 12.0Gb/s	SEAGATE	ST1200MM0088
		0	10	Good	1.09 TB	SAS HDD 12.0Gb/s	SEAGATE	ST1200MM0088
		0	11	Good	1.09 TB	SAS HDD 12.0Gb/s	SEAGATE	ST1200MM0088
		0	12	Good	1.09 TB	SAS HDD 12.0Gb/s	SEAGATE	ST1200MM0088

Figure 9 Create an Auto Tiering Pool Step 2

- Please select disks for pool and select at least two disk types of disks to add tiers an auto tiering pool. Each tier is a disk group. The maximum quantity of disk in a disk group is 64. Select an **Enclosure ID** from the drop-down list to select disks from expansion enclosures.
- 7. Click the **Next** button to continue.

OSAN

eate Pool				
General	RAID Configuration			
Disk Selection	Please select RAID levels.			
RAID Configuration	SSD Tier			
Disk Properties	RAID Level :	RAID 1	Ψ	
Summary	Quantity of SSD Disks : SAS Tier	2 Disk(s)		
	RAID Level :	RAID 6		
	Quantity of SAS Disks :	4 Disk(s)		
	NL-SAS Tier			
	RAID Level :	RAID 5	Y	
	Quantity of NL-SAS Disks :	RAID 0 RAID 1 RAID 3		
		RAID 5		
Back				Next Cancel

Figure 10 Create an Auto Tiering Pool Step 3

- 8. Select a **RAID Level** from the drop-down list which lists available RAID level only according to the disk selection for each tier. And also select a **Quantity of Subgroups** if the combination RAID level is selected.
- 9. Click the **Next** button to continue.

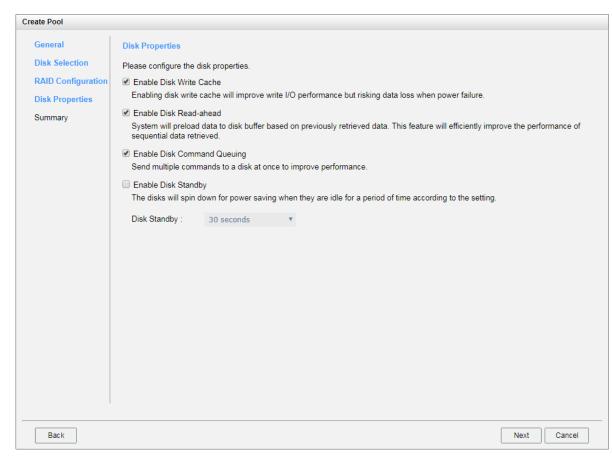


Figure 11 Create an Auto Tiering Pool Step 4

10. Disk properties can also be configured optionally in this step:

- Enable Disk Write Cache: Check to enable the write cache option of disks. Enabling disk write cache will improve write I/O performance but have a risk of losing data when power failure.
- Enable Disk Read-ahead: Check to enable the read-ahead function of disks. System will preload data to disk buffer based on previously retrieved data. This feature will efficiently improve the performance of sequential data retrieved.
- **Enable Disk Command Queuing**: Check to enable the command queue function of disks. Send multiple commands to a disk at once to improve performance.
- **Enable Disk Standby**: Check to enable the auto spin down function of disks. The disks will be spun down for power saving when they are idle for the period of time specified.
- 11. Click the **Next** button to continue.

eate Pool				
General	Pool Properties		Schedule Relocation	
Disk Selection RAID Configuration Disk Properties Summary	Pool Type : Pool Name : Preferred Controller : RAID Configuration SSD Tier RAID Level : Quantity of SSD Disks : SAS Tier RAID Level : Quantity of SAS Disks :	Auto Tiering Pool-3 Controller 1 RAID 1 2 Disk(s) RAID 6 4 Disk(s)	Schedule Type : Relocation Start Time : Relocation Period : Relocation Rate :	Daily 00:00 0 Hours 0 Minutes Fast
	NL-SAS Tier RAID Level : Quantity of NL-SAS Disks : Disk Properties Disk Write Cache : Disk Read-ahead : Disk Command Queuing :	RAID 5 3 Disk(s) Enabled Enabled Enabled		
	Disk Standby :	Disabled		
Back				Finish Cancel

Figure 12 Create an Auto Tiering Pool Wizard Step 5

- 12. By default, we set relocation schedule at 00:00 daily, relocation period set to 00:00 which means let relocation process run until it finishes, and relocation rate to fast.
- 13. After confirmation at summary page, click the **Finish** button to create a pool.

	Pool Name	Status	Health	Total	Free	Available	Thin Provisioning	Auto Tiering	Volumes	Current Controller
▼	Pool-3	Online	Good	18.92 TB	18.92 TB	18.92 TB	Enabled	Enabled	0	Controller 1
Create P	000									

Figure 13 An Auto Tiering Pool is Created

14. The pool has been created. If necessary, click the **Create Pool** button again to create others.

TIP:

Auto Tiering 2.0 supports flexible RAID and disk configurations. You can create each tier (disk group) with different RAID level and different quantity of disk. For example, SSD tier uses 4 disks with RAID 10 for extreme performance, SAS tier uses 6 disks with RAID 6, and NL-SAS tier uses 8 disks with RAID 5 for capacity.

CAUTION:

Because the auto tiering pool is based on thin provisioning technology, please always watch the system logs of thin provisioning pool. If the used capacity of the thin provisioning pool reaches 95% (default thin provisioning policy), the system will deactivate the pool to avoid data loss. So the host cannot access the pool at this time. You have to expand the pool capacity, and then activate the pool to resolve the issue.

List Auto Tiering Pools

Pool View

Click a pool; it will display the related disk groups. Similarly, click a disk group; it will display the related disk drives. The pool properties can be configured by clicking the functions button $\mathbf{\nabla}$ to the left side of the specific pool.

	Pool N	ame	Status	Health	Total	Free	Available	Thin Provis	ioning	Auto Tiering	Volumes	Current Controlle
T	Pool-3		Online	Good	13.46 T	TB 13.46	TB 13.46 TB	Enabled		Enabled	0	Controller 1
Disk Gro	oups											
	No.	Status	Healt	n Total	F	Free	Tier Level	Disks Used	RAID]		
▼	1	Online	Good	10.92	TB 1	10.92 TB	NL-SAS	3	RAID 5			
▼	2	Online	Good	2.18 T	в	2.18 TB	SAS	4	RAID 6			
T	3	Online	Good	372.0	D GB 🔅	372.00 GB	SSD	2	RAID 1			
Disks										-		
Enclosur	re ID	Slot	Status	Health	Capac	city Disl	к Туре	Manufacture	r Mod	lel		
0		1	Online	Good	372.36	6 GB SAS	SSD 12.0Gb/s	SEAGATE	ST4	00FM0053		
		2	Online	Good	372.36	6 GB SAS	SSD 12.0Gb/s	SEAGATE	ST4	00FM0053		

Figure 14 List Auto Tiering Pools

This table shows the column descriptions.

	Column Descriptions					
Column Name	Description					
Pool Name	The pool name.					
Status	The status of the pool:					
	Online: The pool is online.					
	Offline: The pool is offline.					
	Rebuilding: The pool is being rebuilt.					
	Migrating: The pool is being migrated.					
	Relocating: The pool is being relocated.					
Health	The health of the pool:					
	Good: The pool is good.					
	Failed: The pool is failed.					
	• Degraded: The pool is not healthy and not complete. The reason					
	could be missing or failed disks.					
Total	Total capacity of the pool.					
Free	Free capacity of the pool.					
Available	Available capacity of the pool.					
Thin	The status of Thin provisioning:					
Provisioning	• Disabled.					
	• Enabled.					
Auto Tiering	The status of Auto Tiering:					
	• Disabled.					
	• Enabled.					
	Not Supported: The pool contains the disk groups with mixed disk					
	type.					
Volumes	The quantity of volumes in the pool.					
Current	The current running controller of the pool.					
Controller						
(This option is						
only visible when						
dual controllers						
are installed.)						

Table 4 Disk	Group Column Descriptions						
Column Name	Description						
No	The number of disk group.						
Status	The status of the disk group:						
	Online: The disk group is online.						
	Offline: The disk group is offline.						
	Rebuilding: The disk group is being rebuilt.						
	Migrating: The disk group is being migrated.						
	Relocating: The disk group is being relocated.						
Health	The health of the disk group:						
	Good: The disk group is good.						
	• Failed: The disk group fails.						
	• Degraded: The disk group is not healthy and not completed. The						
	reason could be lack of disk(s) or have failed disk.						
Total	Total capacity of the disk group.						
Free	Free capacity of the disk group.						
Disks Used	The quantity of disk drives in the disk group.						
RAID	The RAID level of the disk group.						

Table 5 Disk	Column Descriptions						
Column Name	Description						
Enclosure ID	D The enclosure ID.						
Slot	he position of the disk drive.						
Status	The status of the disk drive:						
	Online: The disk drive is online.						
• Missing: The disk drive is missing in the pool.							
	Rebuilding: The disk drive is being rebuilt.						
	• Transitioning: The disk drive is being migrated or is replaced by						
	another disk when rebuilding occurs.						
	Scrubbing: The disk drive is being scrubbed.						
	• Check Done: The disk drive has been checked the disk health.						
Health	The health of the disk drive:						
	Good: The disk drive is good.						
	• Failed: The disk drive is failed.						
	Error Alert: S.M.A.R.T. error alerts.						
	Read Errors: The disk drive has unrecoverable read errors.						
Capacity	The capacity of the disk drive.						

Disk Type	The type of the disk drive:
	• [SAS HDD NL-SAS HDD SAS SSD SATA SSD]
	• [12.0Gb/s 6.0Gb/s 3.0Gb/s 1.5Gb/s]
Manufacturer	The manufacturer of the disk drive.
Model	The model name of disk drive.

Auto Tiering View

The **Auto Tiering** function tab in the **Pools** function submenu is only visible when auto tiering license is enabled. Click a pool; it will display the related tiering status. The pool properties can be configured by clicking the functions button $\mathbf{\nabla}$ to the left side of the specific pool.

N	ame	Status	Health	Total	Free	Available	Volumes	B Disks	Current Controller
• P	ool-3	Online	Good	13.46 TB	13.46 TB	13.46 TB			Controller 1
Pool Tierin	g Statu	IS:							
Tier Level	Tier	Capacity (G	B) Tier (Jsed (GB)	Move Up (GB) Move D	own (GB)	Move In (GB)	Tier Status
SSD	372		0		0	0		0	
SAS	223	5	0		0	0		0	
NL-SAS	1117	77	0		0	0		0	

Figure 15 Auto Tiering Pools and Status

This table shows the column descriptions.

Column Name	Description
Tier Level	Tier categories, there are SSD, SAS, Nearline SAS, and SATA. The
	system will hide the tiers without any disk groups.
Tier Capacity	Total capacity of the tier.
Tier Used	Used capacity of the tier.
Move Up	The capacity prepares to move up to higher tier.
Move Down	The capacity prepares to move down to lower tier.
Move In	The capacity prepares to move in from other tiers.
Tier Status	Bar chart to show the tier status:
	Light Blue: Used capacity.

Table 6Pool Tiering Status Column Descriptions

•	Orange: The data will move in.
•	Gray: Unallocated.

Operations on Auto Tiering Pools

Most operations are described in the Configuring Storage Pools section. For more information, please refer to the chapter 8.4.3, Operations on Thick Provisioning Pools section and the chapter 9.3.3, Operations on Thin Provisioning Pools section in the <u>XCubeSAN SANOS 4.0 User's Manual</u>. We describe the operations about auto tiering in the following.

Schedule Relocation

Click ▼ -> Schedule Relocation to setup the relocation schedule in auto tiering pool. If the **Relocation Period** sets as 00:00, it will let relocation process run until it finishes.

Schedule Relocation						
Pool Name :	Pool-3					
Frequency :	Daily					
	O Weekly					
	O Repeat Every 12	• Hours				
Relocation Start Time (hh:mm) :	00:00 🔻					
Relocation Period (hh:mm) :	00 🔻 : 00	 (Set as 00:00 to let relocation process run until it finishes.) 				
Relocation Rate :	Fast	Ŧ				
		OK Cancel				

Figure 16 Relocation Schedule

Relocate Now

Click ▼ -> **Relocate Now** to perform relocation right now in an auto tiering pool. Similarly, if **Relocation Period** sets as 00:00, it will let relocation process run until it finishes.

Relocate Now		
Pool Name :	Pool-3	
Relocation Period (hh:mm) :	00 • : 00	 (Set as 00:00 to let relocation process run until it finishes.)
Relocation Rate :	Fast	
		OK Cancel

Figure 17 Relocate Now

Add a Tier (Disk Group) in an Auto Tiering Pool

The Add Disk Group function adds a disk group to a pool to increase the capacity.

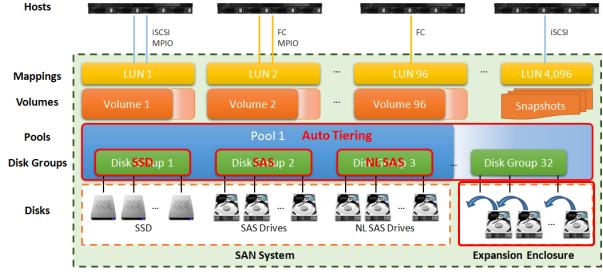


Figure 18 Add a Disk Group in an Auto Tiering Pool

Here is an example of adding a disk group in thin provisioning pool.

1. Select a pool, click ▼ -> Add Disk Group to add a disk group in the auto tiering pool.

dd Disk Group						
Pool Type						
hin Provisioning :		Enabled				
uto Tiering :		Enabled				
AID Level						
lease select a RAID I	evel.					
RAID Level :		RAID 1	0	*		
Quantity of Subgroups	c:	2		*		
elect Disks						
				and the second		
	add a disi			ntity of disk in a disk group i	s 64.	
inclosure ID :		-	d Unit: XS5216			
Enclosure ID	Slot	Health	Capacity	Disk Type	Manufacturer	Model
0	3	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
0	4	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
✓ 0	5	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
✓ 0	6	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
✓ 0	7	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
✓ 0	8	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
0	16	Good	5.46 TB	NL-SAS HDD 12.0Gb/s	SEAGATE	ST6000NM0034

Figure 19 Add Disk Group

- 2. Select a **RAID Level** from the drop-down list and also select a **Quantity of Subgroups** if the combination RAID level is selected.
- Please select disks to add a disk group. The maximum quantity of disk in a disk group is
 64. Select an **Enclosure** from the drop-down list to select disks from the expansion enclosures.
- 4. Click the **OK** button to add a disk group.

Hot Spares in an Auto Tiering Pool

In an auto tiering pool, hot spare drives can only replace the drives of the same disk type. For example, a SSD tier can only be assigned SSD type drives as hot spares drives.

Enclosure	e ID: 0 (Head Unit:	XS5216) 🔻						
<< first <	<prev 1<="" th=""><th>next > la</th><th>ast >></th><th></th><th></th><th></th><th></th><th></th><th></th></prev>	next > la	ast >>						
	Slot	Status	Health	Capacity	Disk Type	Usage	Pool Name	Manufacturer	Model
▼	1	Online	Good	372.36 GB	SAS SSD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST400FM0053
▼	2	Online	Good	372.36 GB	SAS SSD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST400FM0053
▼	3	Online	Good	372.36 GB	SAS SSD 12.0Gb/s	Dedicated Spare	Pool-3	SEAGATE	ST400FM0053
▼	4	Online	Good	372.36 GB	SAS SSD 12.0Gb/s	Free		SEAGATE	ST400FM0053
▼	5	Online	Good	744.96 GB	SAS SSD 12.0Gb/s	Free		MICRON	S630DC-800
▼	6	Online	Good	744.96 GB	SAS SSD 12.0Gb/s	Free		MICRON	S630DC-800
▼	7	Online	Good	744.96 GB	SAS SSD 12.0Gb/s	Free		MICRON	S630DC-800
▼	8	Online	Good	744.96 GB	SAS SSD 12.0Gb/s	Free		MICRON	S630DC-800
▼	9	Online	Good	1.09 TB	SAS HDD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST1200MM0088
▼	10	Online	Good	1.09 TB	SAS HDD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST1200MM0088
▼	11	Online	Good	1.09 TB	SAS HDD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST1200MM0088
▼	12	Online	Good	1.09 TB	SAS HDD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST1200MM0088
▼	13	Online	Good	5.46 TB	NL-SAS HDD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST6000NM0014
▼	14	Online	Good	5.46 TB	NL-SAS HDD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST6000NM0014
▼	15	Online	Good	5.46 TB	NL-SAS HDD 12.0Gb/s	RAID	Pool-3	SEAGATE	ST6000NM0014
▼	16	Online	Good	5.46 TB	NL-SAS HDD 12.0Gb/s	Dedicated Spare	Pool-3	SEAGATE	ST6000NM0014

Figure 20 Hot Spares in Auto Tiering Pool

Configure Volumes

This section will describe the operations of configuring volume in auto tiering pool.

Create a Volume in an Auto Tiering Pool

Here is an example of creating a volume in an auto tiering pool.

1. Select the **Volumes** function submenu, click the **Create Volume** button.

Create Volume				
General	Volume General Set	ttings		
Advanced	Please enter a volum	ne name and configure th	ne volume	e general settings.
Summary	Volume Name :	Vol-3		0
	Pool Name :	Pool-3		(Available : 262144 GB)
	Capacity :	100		GB 🔻
	Volume Type :	RAID Volume		
	Select RAID Volu replication.	me for general RAID usa	age or Ba	ckup Volume for backup usage such as the target volume of local clone or remote
				Next Cancel

Figure 21 Create a Volume of Auto Tiering Pool Step 1

- 2. Enter a **Volume Name** for the pool. The maximum length of the volume name is 32 characters. Valid characters are [A~Z | a~z | 0~9 | -_<>].
- 3. Select a **Pool Name** from the drop-down list. It will also display the available capacity of the pool.
- 4. Enter required **Capacity**. The unit can be selected from the drop-down list.
- 5. Select **Volume Type**. The options are **RAID Volume** (for general RAID usage) and **Backup Volume** (for the target volume of local clone or remote replication).
- 6. Click the **Next** button to continue.

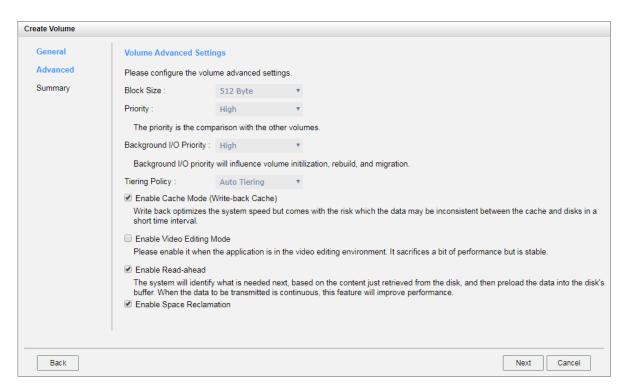


Figure 22 Create a Volume of Auto Tiering Pool Step 2

- 7. Volume advanced settings can also be configured optionally in this step:
 - Block Size: The options are 512 Bytes to 4,096 Bytes.
 - **Priority**: The options are High, Medium, and Low. The priority compares to other volumes. Set it as High if the volume has many I/O.
 - **Background I/O Priority**: The options are High, Medium, and Low. It will influence volume initialization, rebuild, and migration.
 - Tiering Policy: The options are Auto Tiering, Start Highest then Auto Tiering, High Available Tier, Lowest Tier, and No Data Movement. Please refer to the <u>Tiering</u> <u>Policies</u> section for detail.
 - **Enable Cache Mode (Write-back Cache)**: Check to enable cache mode function of volume. Write back optimizes the system speed but comes with the risk where the data may be inconsistent between cache and disks in one short time interval.
 - **Enable Video Editing Mode**: Check to enable video editing mode function. It is optimized for video editing usage. Please enable it when your application is in video editing environment. This option provides a more stable performance figure without high and low peaks but slower in average.
 - **Enable Read-ahead**: Check to enable the read ahead function of volume. The system will discern what data will be needed next based on what was just retrieved from

disk and then preload this data into the disk's buffer. This feature will improve performance when the data being retrieved is sequential.

- **Enable Space Reclamation**: Check to enable the space reclamation function of the volume when the pool is auto tiering.
- 8. Click the **Next** button to continue.

eate Volume			
General	Configure Volume General Se	ttings	
Advanced	Volume Name :	Vol-3	
Summary	Pool Name :	Pool-3	
	Capacity :	100 GB	
	Volume Type :	RAID Volume	
	Configure Volume Advanced	Settings	
	Block Size :	512 Byte	
	Priority :	High	
	Background I/O Priority :	High	
	Tiering Policy :	Auto Tiering	
	Cache Mode :	Enabled	
	Video Editing Mode :	Disabled	
	Read-ahead :	Enabled	
	Space Reclamation :	Enabled	
Back			Finish Cancel

Figure 23 Create a Volume of Auto Tiering Pool Step 3

- 9. After confirmation at summary page, click **Finish** button to create a volume.
- 10. The volume has been created. It will be initialized in protection RAID level (e.g., RAID 1, 3, 5, 6, 0+1, 10, 30, 50, and 60).

	ime Stat	tus	Health	Capacity	Volume Type	SSD Cache	Snapshot Space	Snapshots	Clone	Write	Pool Name
Vol-3	Onli	ine	Optimal	100.00 GB	RAID Volume	Disabled	0 MB / 0 MB	0	N/A	WB	Pool-3

Figure 24 A Volume in Auto Tiering Pool is Created

11. A volume has been created. If necessary, click the **Create Volume** button to create another.

TIP:

SANOS supports instant RAID volume availability. The volume can be used immediately when it is initializing or rebuilding.

TIP:

If the pool contains some disk drives of 4Kn type, it is not available to set 512, 1024, or 2048 block size. When the case happens, it will pop up a warning message and suggest changing the block size to 4096.

List Volumes and Operations on Volumes

Most operations are described in the chapter 8.5, Configuring Volumes section in the <u>XCubeSAN SANOS 4.0 User's Manual</u>. We describe auto tiering operations below.

Change Volume Properties

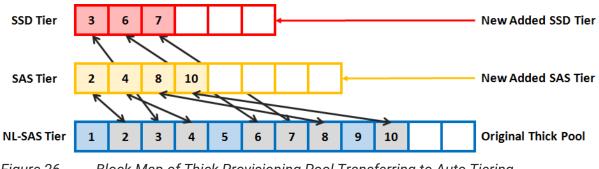
Click ▼ -> Change Volume Properties to change the volume properties of the volume.

Change Volume Properties		
Volume Name:	Vol-3	0
Priority:	ullet High $igodow$ Mediun	n O Low
Background I/O Priority:	High	*
Tiering Policy:	Auto Tiering	×
Cache Mode:	O Write-through	h Cache 🖲 Write-back Cache 🔾 Read-Only 🛛 🚺
Video Editing Mode:	Disabled	* 0
Read-ahead:	Enabled	* 0
Space Reclamation:	Enabled	*
Volume Type:	RAID Volume	* 0
		OK

Figure 25 Change Volume Properties

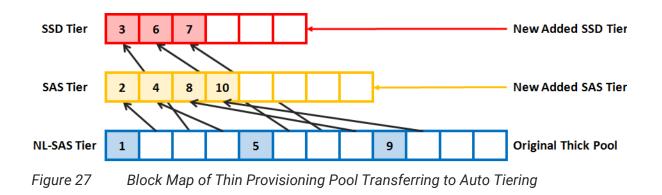
Reclaim Space with Thin Provisioning Pool

Click ▼ -> Space Reclamation to reclaim space from the volume when the volume is in an auto tiering pool. For more information about space reclamation, please refer to the chapter 9.2.2, Space Reclamation section in the <u>XCubeSAN SANOS 4.0 User's Manual</u>.


Configure LUN Mappings and Connect by Host Initiator

Next step you can configure LUN mapping and connect by host initiator. For more information about LUN mapping, please refer to the chapter 8.6, Configure LUN Mappings section in the <u>XCubeSAN SANOS 4.0 User's Manual</u> for detail. For more information about host initiator, please refer to the chapter 8.7, Connect by Host Initiator section in the <u>XCubeSAN SANOS 4.0 User's Manual</u> for detail.

Transfer to Auto Tiering Pool


This section describes thick provisioning pool or thin provisioning pool transfer to auto tiering one. If auto tiering license is enabled, the thick or thin provisioning pool without disk group of mixed disk type can be transferred to the auto tiering pool by **Add Disk Group** option.

Also note that the thick provisioning pool is preconfigured the space, after transferring to the auto tiering, the original disk group in the thick provisioning pool will be the lowest tier. When auto tiering mechanism is running, the hot data are copied to higher tier, but still occupy the space of the original block. If the data is cold, it will return to the original block space. So the total capacity of the pool does not change even adding the capacity of higher tiers.

Thin provisioning is dynamic allocation of space, if the hot data is moved up to the higher tier; it will release the original block space. So the total capacity is the sum of all tiers.

CAUTION:

The action of transferring to auto tiering is irreversible. Consider all possible consequences before making this change.

Transfer from Thick Provisioning Pool to Auto Tiering

First of all, make sure the auto tiering license is enabled. For more information about enabling license operation, please refer to the <u>Enable Auto Tiering License</u> section. And then use **Add Disk Group** function to add another tier (disk group). Here is an example of transfer thick provisioning pool to auto tiering one.

1.	Create a thick provisioning pool with SAS disk drives. Auto Tiering status is Disabled.	
----	---	--

	Pool Na	ame	Status	Health	Total	Free	Available	Thin Provision	ing Auto Tiering	Volumes	Current Controller
V	Pool-1		Online	Good	2.18 TB	2.18 TB	2.18 TB	Disabled	Disabled	0	Controller 1
•	Pool-2		Online	Good	10.92 TB	10.92 TB	10.92 TB	Enabled	Disabled	0	Controller 1
)isk Gro	oups										
	No.	Status	Healt	n Total	Free	Disks U	sed RAI	D			
V		Online	Good	2.18 1	В 2.18 ТВ		RAI	D 5			
Disks											
Enclosur	re ID	Slot	Status	Health	Capacity	Disk Typ	be	Manufacturer	Model		
	re ID	Slot 9	Status Online	Health Good	Capacity 1.09 TB		be ID 12.0Gb/s	Manufacturer SEAGATE	Model ST1200MM0088		
Enclosur	re ID					SAS HD					

Figure 28 Transfer Thick Provisioning Pool to Auto Tiering Step 1

Click ▼ -> Add Disk Group to transfer from a thick provisioning pool to an auto tiering pool. Select Enabled from the Auto Tiering drop-down list. The tier (disk group) must be added one at a time. Select the RAID Level and Select Disks, and then click the OK button.

	sk Group						
Pool	Гуре						
Thin F	Provisioning :		Disabled				
Auto 1	Tiering :		Disable	d 🔻 🚹			
RAID	Level		Disable Enable				
Please	e select a RAID I	evel	Enabled				
	Level :		RAID 1		v		
Selec	t Disks						
		- المراجع			with a failule in a diale	- 04	
		add a dis			ntity of disk in a disk group	IS 04.	
	sure ID :		-	l Unit: XS5216	-		
	Enclosure ID	Slot	Health	Capacity	Disk Type	Manufacturer	Model
	0	1	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
	0	2	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
	0	3	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
	0	4	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
	0	5	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
	0	6	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
	0	7	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
	0	8	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
	0	12	Good	1.09 TB	SAS HDD 12.0Gb/s	SEAGATE	ST1200MM0088
	0	16	Good	5.46 TB	NL-SAS HDD 12.0Gb/s	SEAGATE	ST6000NM0034

Figure 29 Transfer Thick Provisioning Pool to Auto Tiering Step 2

3. Use the same procedure to add another tier if necessary.

	Pool N	ame	Status	Health	Total	F	Free	Available	Thin Provisi	oning	Auto Tiering	Volumes	Current Controller
V	Pool-1		Online	Good	2.18	TB 2	2.18 TB	2.18 TB	Disabled		Enabled	0	Controller 1
T	Pool-2		Online	Good	10.92	2 TB 1	10.92 TB	3 10.92 TB	Enabled		Disabled	0	Controller 1
Niek Or													
isk Gro	oups										_		
	No.	Status	Healt	n Total		Free		Tier Level	Disks Used	RAID			
•	1	Online	Good	2.18	ГВ	2.18 TE	в	SAS	3	RAID 5			
•		Online			-								
V	2	Online				744.00		SSD	2	RAID 1			
V Disks	2	Online	Good	744.0	0 GB	744.00) GB						
Disks Enclosu	2	Online Slot	Good	744.0 Health	0 GB Cap	744.00 pacity) GB	Гуре	Manufacture	Mod			
•	2	Online	Good	744.0	0 GB Cap 744	744.00	D GB		Manufacture MICRON	- Moo S63	lel 0DC-800 0DC-800		

Figure 30 Transfer Thick Provisioning Pool to Auto Tiering Step 3

4. **Auto Tiering** status is **Enabled**. The thick provisioning pool has been transferred to auto tiering.

TIP:

The total capacity of the pool does not change even adding the capacity of higher tiers.

CAUTION:

The action of transferring from the thick provisioning pool to auto tiering is irreversible. Please consider carefully all possible consequences before taking this step.

Transfer from Thin Provisioning Pool to Auto Tiering

First of all, make sure the auto tiering license is enabled. For more information about enabling license operation, please refer to the <u>Enable Auto Tiering License</u> section. And then use **Add Disk Group** function to add another tier (disk group). Here is an example of transfer thin provisioning pool to auto tiering one.

1. Create a thin provisioning pool with NL-SAS disk drives. Auto Tiering status is Disabled.

	Pool N	ame	Status	Health	Total	Free	Availabl	e 1	hin Provisioning	Auto Tiering	Volumes	Current Controller
▼	Pool-1		Online	Good	2.18 TB	2.18 TB	2.18 TB	0)isabled	Enabled	0	Controller 1
▼	Pool-2		Online	Good	10.92 TB	10.92 TB	10.92 TI	B E	nabled	Disabled	0	Controller 1
Disk Gr	oups											
	No.	Status	Healt	n Total	Free	Disks	Used	RAID				
V		Online	Good	10.92	TB 10.92			RAID	5			
Disks Enclosu	ire ID	Slot	Status	Health	Capacity	Disk Typ	20		Manufacturer	Model	1	
0		13	Online	Good	5.46 TB		HDD 12.0)Gb/s	SEAGATE	ST6000NM0014	-	
0		14	Online	Good	5.46 TB	NL-SAS	HDD 12.0)Gb/s	SEAGATE	ST6000NM0014		
0		15	Online	Good	5.46 TB	NL-SAS	HDD 12.0)Gb/s	SEAGATE	ST6000NM0014		
											_	
Create F	Pool											

Figure 31 Transfer Thin Provisioning Pool to Auto Tiering Step 1

Click ▼ -> Add Disk Group to transfer from a thin provisioning pool to an auto tiering pool. Select Enabled from the Auto Tiering drop-down list. The tier (disk group) must be added one at a time. Select the RAID Level and Select Disks, and then click the OK button.

ool	Туре						
n F	Provisioning :		Enabled				
ito '	Tiering :		Disable				
AID	Level		Disable Enable				
eas	e select a RAID I	evel.					
AID	Level :		RAID 1		T		
elec	t Disks						
eas	e select disks to	add a dis	k group. The	e maximum qua	ntity of disk in a disk group i	s 64.	
nclo	sure ID :		0 (Hea	d Unit: XS5216	j) v		
	Enclosure ID	Slot	Health	Capacity	Disk Type	Manufacturer	Model
	0	1	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
	0	2	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
	0	3	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
	0	4	Good	372.36 GB	SAS SSD 12.0Gb/s	SEAGATE	ST400FM0053
•	0	7	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
1	0	8	Good	744.96 GB	SAS SSD 12.0Gb/s	MICRON	S630DC-800
	0	12	Good	1.09 TB	SAS HDD 12.0Gb/s	SEAGATE	ST1200MM0088
	0	16	Good	5.46 TB	NL-SAS HDD 12.0Gb/s	SEAGATE	ST6000NM0034

Figure 32 Transfer Thin Provisioning Pool to Auto Tiering Step 2

3. Use the same procedure to add another tier if necessary.

	Pool N	ame	Status	Health	Total	Free	e Availab	le	Thin Provisi	oning	Auto Tiering	Volumes	Current Controller
V	Pool-1		Online	Good	2.18	TB 2.18	TB 2.18 TE	3	Disabled		Enabled	0	Controller 1
V	Pool-2		Online	Good	11.64	TB 11.6	4 TB 11.64 T	В	Enabled		Enabled	0	Controller 1
									•				
Disk Gro	oups										_		
	No.	Status	Health	n Total		Free	Tier Level)isks Used	RAID			
•	1	Online	Good	10.92	тв	10.92 TB	NL-SAS	3	i	RAID 5			
V	2	Online	Good	744.0	0 GB	744.00 GE	3 SSD	2		RAID 1			
Disks													
Enclosu	re ID	Slot	Status	Health	Сар	acity D)isk Type		Manufacture	r Mo	del		
LIICIOSU								L/-	MICRON	00	30DC-800		
0		7	Online	Good	744.	.96 GB S	AS SSD 12.0G	D/S	MICRON	30.	0000-000		

Figure 33 Transfer Thin Provisioning Pool to Auto Tiering Step 3

4. **Auto Tiering** status is **Enabled**. The thin provisioning pool has been transferred to auto tiering.

TIP:

The total capacity of the pool is the sum of all tiers.

CAUTION:


The action of transferring from the thin provisioning pool to auto tiering is irreversible. Please consider carefully all possible consequences before taking this step.

SSD Cache vs. Auto Tiering

The SSD cache and auto tiering solutions can work together and compliment each other. A key difference between tiering and cache is that tiering moves data to SSD instead of simply caching it. Tiering can also move data both from slower storage to faster storage and vice versa. However, SSD cache is essentially a one-way transaction. When the cache is done with the data it was accelerating it simply nullifies it instead of copying it back to HDD. The important difference between moves and copies is that a cache does not need to have the

redundancy that tiering does. Tiering stores the only copy of data for potentially a considerable period of time so it needs to have full data redundancy like RAID or mirroring.

Total storage capacity in auto tiering is a sum of all individual tier capacities whereas in cache, the cache capacity does not add to the overall slower storage capacity. This is one of the key differences. In addition, SSD cache affects rapider than auto tiering because auto tiering will be affected by relocation the data in a period of time. So SSD cache warm-up timeframe is usually minutes/hours whereas tiering warm-up is usually days.

SSD cache is used for highly frequent data access environments and is effective short term, such as virtualization or video editing applications. However, auto tiering is used for predictable I/O workloads and is effective in long term. It's suitable for web, file, or email server applications.

Table / SSD Cache vs. Al	uto Liering	
	SSD Cache	Auto Tiering
Total Capacity	HDD	HDD + SSD
When SSD is Damaged	Pool Works Fine	Pool Fails
Performance	Effective in Short Term	Effective in Long Term

Table / SSD Cache VS. Auto Hennu	Table 7	SSD Cache vs.	Auto Tierina
----------------------------------	---------	---------------	--------------

Best Practice

Auto tiering technology provides a solution to achieve optimal storage efficiency and improved performance, making it the most cost effective storage solution for data center environments with dynamic workload changes.

If your applications are belongs to sequential I/O from beginning to end, such as surveillance or backup, or their access profiles are very random in the large address range, a homogeneous pool is recommended for your applications. In a homogeneous pool, only one drive type (SSD, SAS, or NL-SAS) is selected during pool creation. If using auto tiering technology in these applications, the data will move up and down frequently without any benefit.

TIP:

Homogeneous pool is suitable for the application of sequential I/O from beginning to end or very random in the large address range. In addition, auto tiering is suitable for the data which has a lifecycle.

Configuration Planning Advice

SSD / SAS / NL-SAS Tier RAID Level and Capacity Ratio

The following is a general guide to the auto tiering pool planning. The user can fine-tune according to the actual situation.

• SSD Tier (\$\$\$)

Suggest SSD tier using at least 4 disks with RAID 10 (better) or 2 disks with RAID 1 for extreme performance. Prepare SSD storage capacity in 10% to 15% of the total pool capacity to fulfill the requirements of critical high I/O applications.

• SAS Tier (\$\$)

Suggest SAS HDD tier configuring with RAID 6 (better) or RAID 5. Prepare about 30% of the total storage capacity.

• NL-SAS Tier (\$)

For capacity tier, suggest NL-SAS HDD using RAID 5 level to store cold data. This tier occupies the rest of the storage capacity.

Figure 35 Best Practice of Auto Tiering

Take an example for reference. First, you can estimate the total capacity used, and estimate how much hot data or high I/O your application uses every day. Assuming 666GB per day, the recommended SSD tier capacity is at least 1.5 times, $1.5 \times 666GB = 1TB$, as a conservative estimate. Then, calculate the SAS HDD tier capacity about 3 times of the SSD tier capacity, $3 \times 1TB = 3TB$, as if the SSD tier full of the buffer, so that the performance does not drop too much. This tier is optional. The remaining space is left for NL-SAS HDD tier. The following table is the summary for reference.

Tier	Capacity per Drive	Quantity	RAID Level	Capacity per Tier	Capacity Ratio
SAS SSD Tier	500GB	4	RAID 10	(4/2) x 500GB = 1TB	10%
SAS HDD Tier	1TB	5	RAID 6	(5-2) x 1TB = 3TB	30%
NL-SAS HDD Tier	3TB	3	RAID 5	(3-1) x 3TB = 6TB	60%

This is a rough planning proposal. Whether to meet customer requirements also requires users to calculate the performance and necessary capacity. Of course, if more capacity is needed, you can also add a disk group to any tier.

Relocation and Its Effect

In the <u>Intelligent Auto Tiering Mechanism</u> section, we introduce there are three major functions in auto tiering technology. Statistics collection and ranking operate automatically, but relocation can be configurable manually. We would like to suggest that users can set the schedule relocation at midnight every day (**Daily 00:00**), the relocation period sets to 8

hours (**08:00**), and the relocation rate sets to **Fast**. So you can ensure that the performance at working hours will not be affected.

Schedule Relocation	
Pool Name :	Pool-3
Frequency :	• Daily
	O Weekly
	Repeat Every 12 Hours
Relocation Start Time (hh:mm) :	00:00 •
Relocation Period (hh:mm) :	08 • : 00 • (Set as 00:00 to let relocation process run until it finishes.)
Relocation Rate :	Fast 🔻
	Fast Medium
	Slow
,	
	OK Cancel

Schedule Relocation Setting

TIP:

If the storage needs to provide 7 x 24 hours of data access services, may or may not find a long period without data access, please try to find a time frame with a slight I/O of inbound and outbound data flow, execute the relocation rate with **Medium** or **Slow** by either schedule or manual for eliminating the possible performance impact.

Also note that performance improvements may not be obvious when using a relocation rate with **Medium** or **Slow** compared to **Fast**, as the execution time is the same, since relocation may not be completed.

Auto Tiering Policies and Their Effect

In the <u>Tiering Policies</u> section, there are five policies described, each policy has a suitable situation.

• Auto Tiering (Default)

This can be used in a large volume of storage structure. Usually the user does not know how to put the data to the right tier; it is entirely handled by the storage system. By default, the data will be relocated at midnight. At this case, hot data calculations take a long time to accumulate and move up, and a few fixed blocks require extreme high performance (but usually the user does not understand the situation). Using this policy will have a significant effect.

• Start Highest then Auto Tiering

This can be used for hot data in a short time, such as video editing. The new coming films are often edited at the beginning. After the editing is complete, the files are not always used and eventually moved to the archive. In this scenario, you need to understand the capacity of the hot data and prepare the capacity of the SSD tier. Then this policy can maximize the efficiency.

• Highest Available Tier

This allows users to allocate resources in a timely manner. Assuming that some volumes will be frequently accessed tomorrow, the IT administrator can manually adjust to this policy. As a result, the data will be relocated to the highest available tier at midnight. In this case, you can get better efficiency under the same resources. Of course, the premise is that the capacity of the volume needs to be controlled.

• Lowest Tier

It is for the purpose of data backup, for those volumes which do not need the performance, and the need for large capacity storage of data. It can be set to this policy.

No Data Movement

This should be least used. The data in the volume using this policy will not operate any hotness analysis. It is suitable for infrequently used data.

As mentioned above, you can choose the right policy based on your application. Or you are unsure, it is recommended to use **Auto Tiering** policy when creating a volume, and the relocation schedule remains in daily. Then observe the usage of every volume via the performance monitor for a while. And then set the required policy for each volume.

Case 1: Video Editing

We assume that video editing has the characteristics of focus data over a period of time. When users edit a new video, the video remains at the SSD tier and performs extreme performance. After the editing is complete, the video moves to the HDD tier and leaves the space for the next video. Therefore, we recommend setting the auto-tiering policy to **Start Highest then Auto Tiering**.

Test Equipments and Configurations

- Server
 - Model: ASUS RS700-E6/ERS4 (CPU: Intel Xeon E5620 2.4GHz / RAM: 24GB)
 10GbE HBA: Broadcom BCM57810 NetXtreme || 10 GigE
 OS: Windows Server 2012 R2
- Storage
 - Model: QSAN XCubeSAN XS5216
 Memory: 8GB (1 x 8GB in bank 1) per controller
 Firmware 1.2.1
 SAS SSD: 4 x HGST Ultrastar SSD800MH.B, HUSMH8010BSS200, 100GB, SAS 12Gb/s
 SAS HDD: 4 x HGST Ultrastar C15K600, HUC156030CS4200, 300GB, SAS 12Gb/s
 NL-SAS HDD: 4 x Seagate Constellation ES, ST500NM0001, 500GB, SAS 6Gb/s
 - Auto Tiering Pool: 2.09TB
 SSD Tier: RAID 10 with 4 x SAS SSD, 185GB
 SAS Tier: RAID 6 with 4 x SAS HDD, 558GB
 NL-SAS Tier: RAID 5 with 4 x NL-SAS SSD, 1.36TB
 - Volume: 1 x 2.09TB in Auto Tiering Pool
 - Auto Tiering Policy: Start Highest then Auto Tiering
- Simulate Video Files
 - 12 x 100GB files

Test Scenario and Result

- 1. Create an auto tiering pool with the following configurations.
 - Auto Tiering Pool: 2.09TB
 SSD Tier: RAID 10 with 4 x SAS SSD, 185GB
 SAS Tier: RAID 6 with 4 x SAS HDD, 558GB

NL-SAS Tier: RAID 5 with 4 x NL-SAS SSD, 1.36TB

Teat Online Good 2.09 TB 2.09 TB 2.09 TB Enabled Enabled Groups No. Status Health Total Free Tier Level Disks Used RAID 1 Online Good 1.36 TB 1.36 TB NL-SAS 4 RAID 5
No. Status Health Total Free Tier Level Disks Used RAID
1 Online Good 1.36 TB 1.36 TB NL-SAS 4 RAID 5
2 Online Good 558.00 GB 558.00 GB AS 4 RAID 6
3 Online Good 185.00 GB 185.00 GB SSD 4 RAID 10

Figure 37 Create an Auto Tiering Pool

2. Create a volume of the capacity 2.09TB, and set the tiering policy as **Start Highest then Auto Tiering**.

Create Volume	
General	Volume Advanced Settings
Advanced	Please configure the volume advanced settings.
Summary	Block Size : 512 Byte 🔻
	Priority : High 🔻
	The priority is the comparison with the other volumes.
	Background I/O Priority : High 🔹
	Background I/O priority will influence volume initilization, rebuild, and migration.
	Tiering Policy : Start Highest then , 🔻
	 Enable Cache Mode (V. Start Highest then Auto Tiering Write back optimizes the short time interval. Enable Video Editing Mode Please enable it when the application is in the video editing environment. It sacrifices a bit of performance but is stable. Enable Read-ahead The system will identify what is needed next, based on the content just retrieved from the disk, and then preload the data into the disk's buffer. When the data to be transmitted is continuous, this feature will improve performance. Enable Space Reclamation
Back	Next Cancel

Figure 38 Create a Volume and Set the Tiering Policy as Start Highest then Auto Tiering

 Copy a 100GB file into the volume. It spends 2 minutes to complete and the transmission speed is around 780 ~ 830 MB/s. The figure shows that the SSD tier is being used.

▼ Test	Online	Good 7.55	TB 7.45 TB					
			10 7.4510	7.45 TB	1	13	Controller 1	
ool Tiering S	Status:							
ïer Level	Tier Capacity (GB)	Tier Used (GB)	Move Up (GB)	Move Dowr	n (GB) Mor	ve In (GB)	Tier Status	
SD	185	81	0	0	0			
SAS	558	0	0	0	0			
IL-SAS	1393	0	0	0	0			
5	98%	complete		× 🔤	🤉 🕕 🗧 📔		Drive Tools	New
Copying 1 it	tem from New Volume	e (E:) to New Volume	(D:)	File	Home	Share	View Manage	
98% com	nplete		н х			Cut		
				Copy	v Pacte	Copy path Paste shortcu	Move Copy Delete Renam	e New
			Speed: 808 MB/s		Clipboa		ut to⊤ to⊤ ▼ Organize	folder New
			Speed. 000 WD/S		⊚ ∞ ↑	👝 🕨 This P	PC New Volume (D:)	
Name: X.tst	t ning: About 5 seconds				Documents	^ ne	*	Date m

Figure 39 Copy a 100GB File into the Volume

4. The first coming file is located in SSD tier because the tiering policy is set as **Start Highest then Auto Tiering**.

Pools A	Auto Tiering										
	Pool Name	Status	Health	Total	Free	Available	Volum	nes	Disks	Current Controller	
V	Test	Online	Good	2.09 1	TB 1.99 TB	1.99 TB			12	Controller 1	
Pool Tier Tier Leve	ring Status: I Tier Capa	acity (GB)	Tier Used ((GB)	Move Up (GB)	Move Down	(GB)	Move	In (GB)	Tier Status	
SSD	185		103		0	0		0			
SAS	557		0		0	0		0			
NL-SAS	1395		0		0	0		0			

Figure 40 The File is Located in the SSD Tier

 Copy another 100GB file into the volume. Since the capacity of SSD tier is full, the system will save the data at the next tier. So it spends 2 minutes and 20 seconds to complete. The transmission speed is around 460 ~ 830 MB/s.

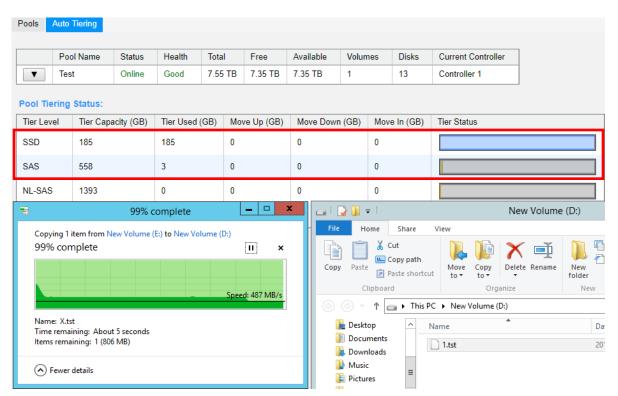


Figure 41 Copy the Second 100GB File into the Volume

6. The second file is distributed in the SSD tier and SAS tier.

Po	ool Name	Status	Health	Tota	I	Free	Available	Volum	nes	Disks	Current Controller
▼ Te		Online	Good	2.09	тв	1.89 TB	1.89 TB			12	Controller 1
				000				(0.0)		1 (00)	T1 01 1
		acity (GB)	Tier Used ((GB)		e Up (GB)	Move Down	(GB)		e In (GB)	Tier Status
r Level	Tier Capa 185	acity (GB)	Tier Used (185	(GB)	Move 0	e Up (GB)	Move Down	(GB)	Move 0	e In (GB)	Tier Status
		acity (GB)		(GB)		e Up (GB)		(GB)		e In (GB)	Tier Status

Figure 42 The File is Distributed in the SSD Tier and SAS Tier

7. After an hour, the system analyzes the data automatically, and the data will be relocated at midnight. The figure shows that 18GB data in SSD tier will be moved down to the SAS tier.

Pools Auto	Tiering									
Po	ol Name	Status	Health	Total	Free	Available	Volun	nes	Disks	Current Controller
▼ Tes	st	Online	Good	2.09 TE	3 1.89 TB	1.89 TB	1		12	Controller 1
Pool Tiering	Status: Tier Capa	city (GB)	Tier Used	(GB) M	Nove Up (GB)	Move Dowr	n (GB)	Move	In (GB)	Tier Status
SSD	185		185	0		18	.()	0		
SAS	557		17	0		0		18		
NL-SAS	1395		0	0		0		0		

Figure 43 Statistic Collection and Ranking

 At the next day, 18GB data in SSD tier has been moved down to the SAS tier. And the event log records how much data is moved. You can see that SSD tier reserved about 10% of the capacity for incoming data.

Pools Auto	Tiering									
Po	ol Name	Status	Health	Total	Free	Available	Volun	nes	Disks	Current Controller
Te:	st	Online	Good	2.09	TB 1.89 TB	1.89 TB	1		12	Controller 1
Pool Tiering Tier Level	Status: Tier Capa	acity (GB)	Tier Used	(GB)	Move Up (GB)	Move Dowr	n (GB)	Mov	e In (GB)	Tier Status
SSD	185		167		0	0		0		
SAS	557		35		0	0		0		
NL-SAS	1395		0		0	0		0		

Figure 44 Complete Relocation

 Continue copying the third 100GB file into the volume. It spends 3 minutes and 8 seconds to complete. The transmission speed is around 460 ~ 500 MB/s. The file is copied to the SAS tier.

		Pool Name	Status	Health	Total	Free	Available	Volume	es Dis	sks	Current Controller	
	V	Test	Online	Good	2.09 T	TB 1.80 TB	1.80 TB	1	12		Controller 1	
	Pool Tier	ing Status:										
	Tier Leve	I Tier Cap	acity (GB)	Tier Used (GB)	Move Up (GB)	Move Down	n (GB)	Move In (GB)	Tier Status	
	SSD	185		185		0	0		0			
	SAS	558		107		0	0		0			
	NL-SAS	1393		0		0	0		0			
		999	% complet	e	_	• x	- - 🚺 💟 🖡 =				New Volum	ne (D:)
Car		rom New Volun te	ne (E:) to Nev	v Volume (D:)		×	File Hom	ne Sha X Cut		w	📔 🗙 🛋	
	% comple						Conv Pacto	Paste :		Move to •	Copy Delete Rename to •	
	% comple			Sp	eed: 498	MB/s	Copy Paste Clip	Doard	shortcut	to •		New Pr
99 Nar Tim	me: X.tst	About 5 second	ds	Sp	eed: 498	MB/s	Copy Paste Clip	Paste s board ↑ □ •	This PC	to • New V	to • • Organize	New Pro folder

Figure 45 Copy the Third 100GB File into the Volume

10. Again, the system analyzes the data automatically after an hour, and the data will be relocated at midnight. The figure shows that 19GB data in SSD tier will move down to the SAS tier, and 1GB data in SAS tier will move up to the SSD tier.

Pools Auto	Tiering									
Po	ol Name	Status	Health	Total	Free	Available	Volun	nes	Disks	Current Controller
▼ Te	st	Online	Good	2.09	TB 1.79 TB	1.79 TB			12	Controller 1
ool Tiering	Status:	acity (GB)	Tier Used	(GB)	Move Up (GB)	Move Dow	n (GB)	Move	e In (GB)	Tier Status
SD	185		185		0	19		1		
S	557		116		1	0		19		
-SAS	1395		0		0	0		0		

Figure 46 Statistic Collection and Ranking

11. At the next day, the relocation completes.

Pools Auto	Tiering										
Po	ol Name	Status	Health	Total	Free	e	Available	Volun	nes	Disks	Current Controller
▼ Te	st	Online	Good	2.09	TB 1.79) TB	1.79 TB	1		12	Controller 1
Pool Tiering Tier Level	-	acity (GB)	Tier Used	(GB)	Move Up	(GB)	Move Dowr	n (GB)	Move	e In (GB)	Tier Status
SSD	185		167		0		0		0		
AS	557		134		0		0		0		
L-SAS	1395		0		0		0		0		

Figure 47 Complete Relocation

12. Repeat several times until SSD tier and SAS tier are full of data. The hot data will be moved up to the higher tier and the cold data will be moved down to the lower tier.

Pools Auto	Tiering									
Poo	ol Name	Status	Health	Total	Free	Available	Volum	nes Disks	Current Controller	
▼ Tes	t	Online	Good	2.09 1	TB 1.31 TB	1.31 TB	1	12	Controller 1	
Pool Tiering Tier Level	Status: Tier Capa	city (GB)	Tier Used	(GB)	Move Up (GB)	Move Dow	n (GB)	Move In (GB)	Tier Status	
SSD	185		185		0	18		0		
SAS	558		558		0	73		18		
NL-SAS	1393		349		0	0		73		

Figure 48 Statistic Collection and Ranking

13. The relocation completes.

Pools Auto	Tiering										
Po	ol Name	Status	Health	Total	Fre	e	Available	Volun	nes	Disks	Current Controller
▼ Te	st	Online	Good	2.09	TB 1.02	2 TB	1.02 TB			12	Controller 1
Pool Tiering Tier Level		acity (GB)	Tier Used ((GB)	Move Up	(GB)	Move Dowr	ı (GB)	Move	e In (GB)	Tier Status
SSD	185		167		0		0		0		
SAS	558		503		0		0		0		
NL-SAS	1393		422		0		0		0		

Figure 49 Complete Relocation

14. Last, copy the first file back to the source volume and observe the transmission speed. You can also compare the performance monitor of disks in the web UI and observe which tier the data is located.

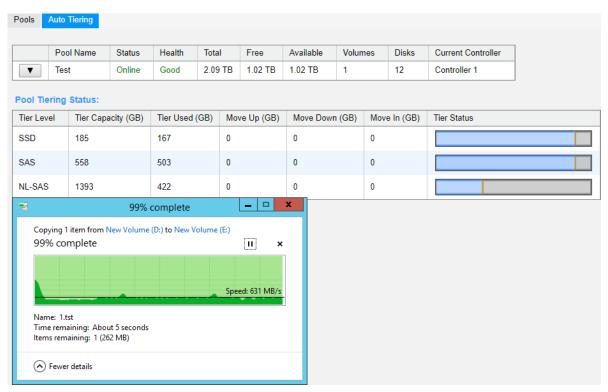


Figure 50 Test the Performance

Summary

In case 1, the data locates at the SSD tier first because we set the auto-tiering policy as **Start Highest then Auto Tiering**. When user edits a new video, the video remains at the SSD tier and performs extreme performance. After the editing is complete, the video moves to the HDD tier and leaves the space for the next video. The scenario meets the expectations of video editing.

Case 2: VMware

We simulate 8 VMs (Virtual Machines) running on a server, assume that they have different I/O queue depths and possess intensive I/O flows. We recommend setting the auto-tiering policy as **Auto Tiering**. After working a while, we assume that the data with heavy I/O will be relocated to the higher tier for better performance.

Test Equipments and Configurations

- Server
 - Model: ASUS RS700-E6/PS4 (CPU: Intel Xeon E2620 2.0GHz / RAM: 20GB)
 10GbE HBA: Intel Ethernet CNA X710-DA4 FH
 OS: VMware ESXi 6.5
- Storage

Model: QSAN XCubeSAN XS3224
 Memory: 8GB (2 x 4GB in bank 1 & 3) per controller
 Firmware 1.2.1
 SAS SSD: 4 x HGST Ultrastar SSD800MH.B, HUSMH8010BSS200, 100GB, SAS 12Gb/s
 SAS HDD: 4 x HGST Ultrastar C15K600, HUC156030CS4200, 300GB, SAS 12Gb/s
 NL-SAS HDD: 4 x Seagate Constellation ES.3, ST1000NM0023, 1TB, SAS 6Gb/s

- Auto Tiering Pool: 3.45TB
 SSD Tier: RAID 10 with 4 x SAS SSD, 185GB
 SAS Tier: RAID 6 with 4 x SAS HDD, 558GB
 NL-SAS Tier: RAID 5 with 4 x NL-SAS SSD, 2.73TB
- Volume: 1 x 3.45TB in Auto Tiering Pool, 8 x VMs in the Volume
- Auto Tiering Policy: Auto Tiering
- I/O Pattern
 - Tool: IOmeter V1.1.0
 - Workers: 1
 - Access Specifications:

VM1: 256KB, 100% Write, 100% Random, Outstanding **128**, Maximum Disk Size 10GB VM2: 256KB, 100% Write, 100% Random, Outstanding **16**, Maximum Disk Size 20GB VM3: 256KB, 100% Write, 100% Random, Outstanding **32**, Maximum Disk Size 10GB VM4: 256KB, 100% Write, 100% Random, Outstanding **48**, Maximum Disk Size 20GB VM5: 256KB, 100% Write, 100% Random, Outstanding **64**, Maximum Disk Size 10GB VM6: 256KB, 100% Write, 100% Random, Outstanding **80**, Maximum Disk Size 20GB VM7: 256KB, 100% Write, 100% Random, Outstanding **96**, Maximum Disk Size 10GB VM8: 256KB, 100% Write, 100% Random, Outstanding **112**, Maximum Disk Size 20GB

Test Scenario and Result

- 1. Create an auto tiering pool with the following configurations.
 - Auto Tiering Pool: 3.45TB

SSD Tier: RAID 10 with 4 x SAS SSD, 185GB SAS Tier: RAID 6 with 4 x SAS HDD, 558GB NL-SAS Tier: RAID 5 with 4 x NL-SAS SSD, 2.73TB

V	Pool N test	ame	Status Online	Health Good	Total 3.45		ee 10 TB	Available 3.10 TB	Thin Provision		Auto Tiering Enabled
•	เธอเ			0000	J.4J	10 J.		3.1010	LINADIEC		Lilabled
k Gr	oune										
sk Gr	oups										_
	No.	Status	Health	n Total		Free		Tier Level	Disks Used	RAID	
•	1	Online	Good	2.73	тв	2.73 TE	В	NL-SAS	4	RAID 5	;
▼	2	Online	Good	558.0	00 GB	558.00	GB	SAS	4	RAID 6	;
▼	3	Online	Good	185.0	00 GB	185.00	GB	SSD	4	RAID 1	0

Figure 51 Create an Auto Tiering Pool

2. Create a volume of the capacity 3.45TB, and sets the tiering policy as **Auto Tiering**.

Create Volume	
General	Volume Advanced Settings
Advanced	Please configure the volume advanced settings.
Summary	Block Size : 512 Byte 🔻
	Priority : High 🔻
	The priority is the comparison with the other volumes.
	Background I/O Priority : High 🔹
	Background I/O priority will influence volume initilization, rebuild, and migration.
	Tiering Policy : Auto Tiering 🔻
	 Enable Cache Mode (V Start Highest then Auto Tiering Highest Available Tier Lowest Tier No Data Movement Enable Video Editing Move Please enable it when the application is in the video editing environment. It sacrifices a bit of performance but is stable. Enable Read-ahead The system will identify what is needed next, based on the content just retrieved from the disk, and then preload the data into the disk's buffer. When the data to be transmitted is continuous, this feature will improve performance. Enable Space Reclamation
Back	Next Cancel

Figure 52 Create a Volume and Set the Tiering Policy as Auto Tiering

 Create eight VMs and save their datastores in the volume. When they are ready, run IOmeter on each VM to observe the performance. Because the tiering policy is set as Auto Tiering, the initial space is allocated in the tier which is healthier and has more free capacity than other tiers. The data is located in the NL-SAS tier with RAID 5.

Pools Auto	Tiering										
Po	ol Name	Status	Health	Total	Free	Available	Volum	nes [Disks	Current Controller	
▼ tes	t	Online	Good	3.45	TB 3.25 TB	3.25 TB	1	1	12	Controller 1	
Pool Tiering Status: Tier Level Tier Capacity (GB) Tier Used (GB) Move Up (GB) Move Down (GB) Move In (GB) Tier Status											
SSD	185		0		0	0		0			
SAS	557		0		0	0		0			
NL-SAS	2793		210		0	0		0			

Figure 53 The Data is Located in the NL-SAS Tier

- 4. The followings are the throughput of VMs running by IOmeter at the beginning.
 - VM1: 256KB, 100% Write, 100% Random, Outstanding **128**, Maximum Disk Size 10GB, the throughput is 9.96 MB/s

0	lome	eter		- • ×
		h a f D	?	
Topology	Disk Targets Network Targets Access	Specifications Resul	ts Display Test Setup	
E∰ Al Managers E III wiN-5A944QIS8H	to the progress bar of your choice.	Record last update results to file	Results Since Update Free Image: Start of Test Image: Start of Test Image: Start of Test Image: Start of Test	equency (seconds)
	Display A Total I/Os per Second	ll Managers	37.99	100 >
	A Total MBs per Second (Decimal)	ll Managers	9.96 MBPS (9.50 MiBPS)	10 >
	Average I/O Response Time (ms)	II Managers	2514 2364	10000
		ll Managers	7739.9470	10000
		ll Managers	0.49 %	1%
		II Managers	0	
P series-Quick-S-R0-S64x4+4-C0-	A		Run 1 c	

Figure 54 Throughput of VM1 at the Beginning

- VM2: 256KB, 100% Write, 100% Random, Outstanding 16, Maximum Disk Size 20GB, the throughput is 4.78 MB/s
- VM3: 256KB, 100% Write, 100% Random, Outstanding **32**, Maximum Disk Size 10GB, the throughput is 4.41 MB/s
- VM4: 256KB, 100% Write, 100% Random, Outstanding 48, Maximum Disk Size 20GB, the throughput is 4.13 MB/s
- VM5: 256KB, 100% Write, 100% Random, Outstanding 64, Maximum Disk Size 10GB, the throughput is 3.98 MB/s
- VM6: 256KB, 100% Write, 100% Random, Outstanding 80, Maximum Disk Size 20GB, the throughput is 3.79 MB/s
- VM7: 256KB, 100% Write, 100% Random, Outstanding 96, Maximum Disk Size 10GB, the throughput is 3.70 MB/s
- VM8: 256KB, 100% Write, 100% Random, Outstanding 112, Maximum Disk Size 20GB, the throughput is 3.61 MB/s
- Stop VM2~VM8 I/O but keep VM1 running I/O, the throughput of VM1 is up to 40.98 MB/s.

0	lor	neter		_ 🗆 X
		1	?	
Topology	Disk Targets Network Targets Acce	ess Specifications Res	sults Display Test Setup	
⊡À\All Managers ⊕	Drag managers and workers from the Topology window to the progress bar of your choice.	Record last update results to file		Frequency (seconds)
	Display Total I/Os per Second	All Managers	156.33	1000 >
	Total MBs per Second (Decimal)	All Managers	40.98 MBPS (39.08 MiBPS)	100 >
	Average I/O Response Time (ms)	All Managers	789.0104	1000 >
	Maximum I/O Response Time (ms)	All Managers	2528.1981	10000
	% CPU Utilization (total)	All Managers	1.33 %	10 %
< III >	Total Error Count	All Managers	0	0
P series-Quick-S-R0-S64x4+4-C0)-A		Run	1 of 1

Figure 55 Throughput of VM1 when Stop VM2~VM8 I/O

 Because VM1 keeps I/O, the data in VM1 will be accessed more frequently than others. After analysis and relocation by auto tiering mechanism, the data in VM1 has been moved to a higher tier. We check the performance of VM1 again; the throughput is up to 465.86 MB/s.

Io	Ion	neter		_ 🗆 🗙
		h 36 (₽ ?	
Topology	Disk Targets Network Targets Acce	ss Specifications	Results Display Test Setup	
E-M All Managers ⊕-	Drag managers and workers from the Topology window to the progress bar of your choice.	Record last upda results to file		Frequency (seconds)
	Display Total I/Os per Second	All Managers	1777.11	10000
	Total MBs per Second (Decimal)	All Managers	465.86 MBPS (444.28 MiBPS)	1000
	Average I/O Response Time (ms)	All Manager	73.0350	100
	Maximum I/O Response Time (ms)	All Managers	609.2728	1000 >
	% CPU Utilization (total)	All Managers	8.90 %	10 %
< III >	Total Error Count	All Managers	0	 >
L P series-Quick-S-R0-S64x4+4-C0-/	A		Run	1 of 1

Figure 56 Throughput of VM1 after Analysis and Relocation

- 7. Run VM2~VM8 I/O again, check performance. The followings are the throughput of VMs running by IOmeter.
 - VM2: 256KB, 100% Write, 100% Random, Outstanding 16, Maximum Disk Size 20GB, the throughput is 74.75 MB/s

10	lor	neter		_ 🗆 X
		1 HF 🛛	?	
Topology	Disk Targets Network Targets Acce	ss Specifications Res	ults Display Test Setup	
Al Managers	Drag managers and workers from the Topology window to the progress bar of your choice.	Record last update results to file	Results Since Update P © Start of Test O Last Update	requency (seconds)
	Display	All Managers	285.15	1000
	Total I/Os per Second			>
	Total MBs per Second (Decimal)	All Managers	74.75 MBPS (71.29 MiBPS)	100
		All Managers	56.0357	100
	Average I/O Response Time (ms)			
	Maximum I/O Response Time (ms)	All Managers	488.4598	1000
	% CPU Utilization (total)	All Managers	3.16 %	10 % >
< III >	Total Error Count	All Managers	0	0
P series-Quick-S-R0-S64x4+4-C0)-A		Run 1	of 1 //

Figure 57 Throughput of VM2

- VM3: 256KB, 100% Write, 100% Random, Outstanding 32, Maximum Disk Size 10GB, the throughput is 68.78 MB/s
- VM4: 256KB, 100% Write, 100% Random, Outstanding 48, Maximum Disk Size 20GB, the throughput is 63.59 MB/s
- VM5: 256KB, 100% Write, 100% Random, Outstanding 64, Maximum Disk Size 10GB, the throughput is 60.03 MB/s
- VM6: 256KB, 100% Write, 100% Random, Outstanding 80, Maximum Disk Size 20GB, the throughput is 57.12 MB/s
- VM7: 256KB, 100% Write, 100% Random, Outstanding 96, Maximum Disk Size 10GB, the throughput is 54.90 MB/s
- VM8: 256KB, 100% Write, 100% Random, Outstanding 112, Maximum Disk Size 20GB, the throughput is 54.18 MB/s

Summary

In case 2, although the auto-tiering policy sets to **Auto Tiering**, the data is allocated in the tier which is healthier and has more free capacity than other tiers at the beginning. Then the data with frequently accessed I/O will be relocated to the higher tier for better performance. The following table summarizes the throughput before and after the relocation and an improvement percentage calculation as a reference. This verifies the scenario and meets the expectations of VMware.

VM Name	Throughput	Throughput	Improved
	Before Relocation	After Relocation	
VM1	9.96 MB/s	465.86 MB/s	4,577%
VM2	4.78 MB/s	74.75 MB/s	1,464%
VM3	4.41 MB/s	68.78 MB/s	1,460%
VM4	4.13 MB/s	63.59 MB/s	1,440%
VM5	3.98 MB/s	60.03 MB/s	1,408%
VM6	3.79 MB/s	57.12 MB/s	1,407%
VM7	3.70 MB/s	54.90 MB/s	1,384%
VM8	3.61 MB/s	54.18 MB/s	1,401%

Table 9Summarize the Throughput Before and After the Relocation

Case 3: Sudden Reaction

In order to cope with an expected sudden event, IT administrators can move the required data to the SSD tier in advance. In general, we recommend setting the auto-tiering policy to **Lowest Tier**. The day before the activity, IT administrator manually set the volume containing the required data to **Highest Available Tier** and then performs **Relocation Now** manually to force relocating data.

Test Equipments and Configurations

- Server
 - Model: ASUS RS700-E6/ERS4 (CPU: Intel Xeon E5620 2.4GHz / RAM: 24GB) 10GbE HBA: Intel Ethernet CNA X710-DA4 FH OS: Windows Server 2012 R2
- Storage
 - Model: QSAN XCubeSAN XS5216
 Memory: 16GB (2 x 8GB in bank 1 & 3) per controller
 Firmware 1.2.1
 SAS SSD: 4 x HGST Ultrastar SSD800MH.B, HUSMH8010BSS200, 100GB, SAS 12Gb/s
 SAS HDD: 4 x HGST Ultrastar C15K600, HUC156030CS4200, 300GB, SAS 12Gb/s
 NL-SAS HDD: 4 x Seagate Constellation ES, ST500NM0001, 500GB, SAS 6Gb/s
 Auto Tiering Pool: 2.09TB
 SSD Tier: RAID 10 with 4 x SAS SSD, 185GB
 - SAS Tier: RAID 6 with 4 x SAS HDD, 558GB

NL-SAS Tier: RAID 5 with 4 x NL-SAS SSD, 1.36TB

- Volume: 1 x 2.09TB in Auto Tiering Pool
- Auto Tiering Policy: Lowest Tier then Highest Available Tier
- I/O Pattern
 - Tool: IOmeter V1.1.0
 - Workers: 1
 - Outstanding (Queue Depth): 128
 - Maximum Disk Size: 50GB
 - Access Specifications: 4KB, 100% Write, 100% Random

Test Scenario and Result

- 1. Create an auto tiering pool with the following configurations.
 - Auto Tiering Pool: 2.09TB
 SSD Tier: RAID 10 with 4 x SAS SSD, 185GB
 SAS Tier: RAID 6 with 4 x SAS HDD, 558GB
 NL-SAS Tier: RAID 5 with 4 x NL-SAS SSD, 1.36TB

•	Pool N Teat		Status Online	Health Good	Total 2.09 T	Free B 2.09 TB	Available 2.09 TB	Thin Provision Enabled		o Tier abled
sk Gro		Chatura	L La a lab	Tetel		Free	Tinglawal	Disks Used	DAID	
▼	No. 1	Status Online	Health Good	Total 1.36	тв	Free 1.36 TB	Tier Level	4	RAID RAID 5	
• •	2	Online	Good		0 GB	558.00 GB	SAS	4	RAID 6	
▼	3	Online	Good	185.0	0 GB	185.00 GB	SSD	4	RAID 10	

Figure 58 Create an Auto Tiering Pool

2. Create a volume of the capacity 2.09TB, and the tiering policy sets as Lowest Tier.

Create Volume	
General	Volume Advanced Settings
Advanced	Please configure the volume advanced settings.
Summary	Block Size : 512 Byte 🔻
	Priority : High 🔻
	The priority is the comparison with the other volumes.
	Background I/O Priority : High v
	Background I/O priority will influence volume initilization, rebuild, and migration.
	Tiering Policy : Lowest Tier
	 Enable Cache Mode (M Start Highest then Auto Tiering Write back optimizes the short time interval. Enable Video Editing Mode Please enable it when the application is in the video editing environment. It sacrifices a bit of performance but is stable. Enable Read-ahead The system will identify what is needed next, based on the content just retrieved from the disk, and then preload the data into the disk's buffer. When the data to be transmitted is continuous, this feature will improve performance. Enable Space Reclamation
Back	Next Cancel

Figure 59 Create a Volume and Set the Tiering Policy as Lowest Tier

- 3. Run IOmeter to observe the performance. IOmeter parameters are on the following.
 - Tool: IOmeter V1.1.0
 - Workers: 1
 - Outstanding (Queue Depth): 128
 - Maximum Disk Size: 50GB
 - Access Specifications: 4KB, 100% Write, 100% Random

Because the tiering policy sets as **Lowest Tier**, the I/O file is located in the NL-SAS tier, and the IOPS is 341.28.

Pools	Auto Tiering										
	Pool Name	Status	Health	Total	Free	Available	Volum	nes	Disks	Current Controller	
▼	Teat	Online	Good	2.09 T	B 2.04 TB	2.04 TB	1		12	Controller 1	
Pool Tiering Status: Tier Level Tier Capacity (GB) Tier Used (GB) Move Up (GB) Move Down (GB) Move In (GB) Tier Status											
SSD	185		0		0	0	(00)	0	s (00)		
SAS	557		0	(0	0		0			
NL-SAS	1395		52	(0	0		0			

Figure 60 The I/O File is Located in the NL-SAS Tier

0	lor	neter		- 🗆 X
		↑ ## 0	?	
Topology	Disk Targets Network Targets Acce	ess Specifications Res	ults Display Test Setup	
All Managers S267-04 Worker 1 Worker 2	Drag managers and workers from the Topology window to the progress bar of your choice.	Record last update results to file	Results Since Update Fr Start of Test C Last Update	equency (seconds)
Worker 3	Display	All Managers	341.28	1000
	Total I/Os per Second			>
	Total MBs per Second (Decimal)	All Managers	1.40 MBPS (1.33 MiBPS)	10 >
	Average I/O Response Time (ms)	All Managers	374.7302	1000
	Average i/O Nesponse Time (ins)	All Managers	2360.6548	10000
	Maximum I/O Response Time (ms)	Air Managers	2300.0346	>
		All Managers	2.90 %	10 %
	% CPU Utilization (total)			>
P series-Quick-S-R0-S64x4+4-C0-A	A		Run 1	of 1

Figure 61 IPOS of the Volume

4. Assume that the data in this volume will be used frequently tomorrow; manually change the tiering policy to **Highest Available Tier**.

Change Volume Properties	
Volume Name:	Test-VD 1
Priority:	\odot High \bigcirc Medium \bigcirc Low
Background I/O Priority:	High 🔻
Tiering Policy:	Highest Available Tie 🔻
Cache Mode:	Auto Hering Start Highest then Auto Tiering e-back Cache O Read-Only 1
Video Editing Mode:	Highest Available Tier Lowest Tier
Read-ahead:	No Data Movement
Space Reclamation:	Enabled V
Volume Type:	RAID Volume 🔻 🚺
	OK Cancel

Figure 62 Change the Tiering Policy to Highest Available Tier

5. After an hour, the system analyzes the data automatically, and it will be relocated at midnight or manually execute relocation via the function **Relocation Now**. You can also set the relocation rate as **Medium** or **Slow** to eliminate the possible performance impact. The figure shows that 52GB data in NL-SAS tier will be moved up to the SSD tier.

F	ool Name	Status	Health	Total	Free	Available	Volum	nes	Disks	Current Controller	
v 1	eat	Online	Good	2.09 TB	2.04 TB	2.04 TB	1		12	Controller 1	
ool Tierir	ng Status:										
Tier Level	-	acity (GB)	Tier Used	(GB) M	ove Up (GB)	Move Dow	n (GB)	Move	e In (GB)	Tier Status	
SSD	185		0	0		0		52			
SAS	557		0	0		0		0			
NL-SAS	1395		52	5	,	0		0			
Pool Name Relocation	ow : Period (hh:m	ım) :	Teat 00	▼: 00	▼ (Set	: as 00:00 to le	et relocat	ion pro	ocess run i	until it finishes.)	
Relocation	e: Period (hh:m	ım) :	00		▼ (Set	: as 00:00 to le	et relocat	ion pro	ocess run i	ıntil it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium			: as 00:00 to le	et relocat	ion pro	ocess run i	ıntil it finishes.)	
	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		: as 00:00 to le	ət relocat	ion pro	ocess run i	intil it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast	1		as 00:00 to le	et relocat	ion pro	ocess run u	ıntil it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		: as 00:00 to le	et relocat	ion pro	ocess run u	ıntil it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		as 00:00 to le	et relocat	ion pro	ocess run u	until it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		: as 00:00 to le	ət relocat	ion pro	ocess run i	ıntil it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		: as 00:00 to le	et relocat	ion pro	ocess run u	ıntil it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		: as 00:00 to le	ət relocat	ion pro	icess run i	ıntil it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		as 00:00 to le	et relocat	ion pro	icess run t	until it finishes.)	
Relocation	e: Period (hh:m	ım) :	00 Medium Fast Medium	1		as 00:00 to le	et relocat	ion pro	icess run t	until it finishes.)	

Figure 63 Execute Relocation Now Manually

6. The relocation completes. The data has been moved to the SSD tier.

P	ool Name	Status	Health	Total	Free	Available	Volum	nes	Disks	Current Controller
▼ Te	at	Online	Good	2.09	TB 2.04 TB	2.04 TB	1		12	Controller 1
Fier Level	Tier Cap	acity (GB)	Tier Used	(GB)	Move Up (GB)	Move Dowr	n (GB)	Move	ln (GB)	Tier Status
ier Level	Tier Capa 185	acity (GB)	Tier Used	(GB)	Move Up (GB) 0	Move Dowr 0	ו (GB)	Move 0	e In (GB)	Tier Status
		acity (GB)		(GB)			ו (GB)		e In (GB)	Tier Status

Figure 64 Complete Relocation

7. The IOPS of this volume increases to 44170.28.

0	lor	neter		– – X						
Topology	Topology Disk Targets Network Targets Access Specifications Results Display Test Setup									
All Managers S267-04 Worker 1 Worker 2	Drag managers and workers from the Topology window to the progress bar of your choice.	Record last update results to file	Results Since Up G Start of Test C Last Update	odate Frequency (seconds)						
	Display	All Managers	44170.28	100000						
Worker 5	Total I/Os per Second	All Manager	100.02 MDDC (172.54 M/D	<u> </u>						
Worker 7	Total MBs per Second (Decimal)	All Managers	180.92 MBPS (172.54 MiBF	> 1000						
	Average I/O Response Time (ms)	All Managers	2.8894	10						
	Maximum I/O Response Time (ms)	All Managers	68.2109	100						
	% CPU Utilization (total)	All Managers	17.27 %	100 %						
P series-Quick-S-R0-S64x4+4-C0-	A			Run 1 of 1 //						

Figure 65 IPOS of the Volume after Relocation

Summary

In case 3, IT administrator can manually control the data into the higher or lower tier in advance. The scenario meets the expectations of an expected sudden event.

Auto Tiering Notices

There are some notices about auto tiering.

- In our design, the snapshot data will be located at the lowest tier in order to obtain economic benefits, and retain the highest space for performance usage. If an auto tiering pool enables snapshots, the performance may be limited to the HDDs at the lowest tier.
- If using SATA SSDs in dual controller system, the performance of each SSD is limited to 270MB/s per SSD due to the MUX board.
- In the <u>SSD Cache vs. Auto Tiering</u> section, we know that the effectiveness of SSD cache can be seen in a short term, and auto tiering is effective in a long term. Both functions can be used at the same time and achieve complementary effects. Be notice that the quantity and the capacity of SSDs which SSD cache and auto tiering use, and IT administrator should adjust via the performance monitor at any time to get better.

Conclusion

With auto tiering technology, the XCubeSAN series can help you put the right data in the right place at the right time for optimal use of all storage tiers and allow you to reduce storage costs and management overhead while increasing performance and capacity.

Intelligent algorithm behind auto tiering manages the data relocation and monitors the data hotness ratio using half-life coefficient and advanced ranking mathematics. Relocations can occur on the user-defined relocation schedule, making auto tiering a truly automated offering.

Apply To

• XCubeSAN XS5200 / XS3200 / XS1200 FW 1.2.0 and later

Reference

SSD Cache 2.0 White Paper

• SSD Cache 2.0 White Paper

Appendix

Related Documents

There are related documents which can be downloaded from the website.

- All XCubeSAN Documents
- XCubeSAN QIG (Quick Installation Guide)
- <u>XCubeSAN Hardware Owner's Manual</u>
- <u>XCubeSAN Configuration Worksheet</u>
- <u>XCubeSAN SANOS 4.0 User's Manual</u>
- <u>Compatibility Matrix</u>
- White Papers
- <u>Application Notes</u>

Technical Support

Do you have any questions or need help trouble-shooting a problem? Please contact QSAN Support, we will reply to you as soon as possible.

- Via the Web: https://qsan.com/support
- Via Telephone: +886-2-7720-2118 extension 136 (Service hours: 09:30 - 18:00, Monday - Friday, UTC+8)
- Via Skype Chat, Skype ID: qsan.support (Service hours: 09:30 - 02:00, Monday - Friday, UTC+8, Summer time: 09:30 - 01:00)
- Via Email: support@qsan.com