Niagara Users Guide (3.4.5)

Firmware Test & Tools Team

Generated on May 18, 2015

HGST

awestern Digial cameasy

Contents

Contents 1
1 Introduction 13
1.1 Intended Audience e e e e e e e e e 13

1.2 What This Manual Covers e e e 13

1.3 Basic Overview Of CIL Features it ittt e e e 13
1.3.1 Expandability 14

1.3.2 Portability e e e e e 14

1.3.3 Quick Survey Of Current Features (Subject To Expansion) 15

2 Using The Graphical User Interface 16
2.1 Overview Of The Main Window it 16
2.2 Device Selection e e e 17

23 Executing ACDB Command 18
2.3.1 Quick CDB Commands it e 18

24 Buffer Manager e e e 18
24.1 BufferDump e e e 18

242 BufferDiff e e e 20

243 BufferFill. 21

25 Download Code e e e 22
2.6 Format e 22

2.7 LogBin e e e e e 23
2.8 Lock Drives e 24
2.9 Mode Selection e e e e e e 25
2.10 Super CSO . . . L e e 26

3 Basic Use Of The Command Line Interface 27
3.1 Introduction e e e e e e 27
3.2 BasicCommand Entry 27
32.1 GettingHelp e 28

322 Command Options o v v ittt e e e e e e e 29

3.2.3 Using Keywords In Place Of Numbers 30

3.3 Table Of CDB Commands i i it e e e e e e e 31
34 Commands Specific ToThe CIL et 35
34.1 Thedevicecommand e e 48

342 Thebuff Command 49

343 Theuilcommand e e e 56

344 Thefeedback command 57

HGST Confidential 1

CONTENTS

3.4.5 TherandlbaCommand e 58

4 Using The Serial Extension 59
4.1 Introduction e e e 59
4.1.1 Basic Architecture e 59

4.1.2 Integratability 59

4.1.3 Buffers e e e e e 59

4.1.4 Numbers and Variables 59

415 CILSUPPOIt oottt e e e e 60

4.2 Connecting Niagaratoa drive it 60
43 Commands e e e e e 60
4.4 UART . . . e e e 61
441 UART 2 . . . o e e e e e e e 61

442 UART2CDB Support o o e e e e e e e e 62

443 UART 3 . . . e e 63

444 UART2 & UART3I Commands o v ittt e e e e e 63

445 UART2Only Commands ot ittt et 64

446 UART3OnlyCommands i vt vttt e e e e e e e 65

4.47 Additional Helper Serial Commands o 66

4.5 Advanced UART Commands e e e 66
4.5.1 Driver Parameters e e 66

4.5.2 Supported UIL Messages v v v v v ittt e e e e e 66

453 SI0 . . . e e 67

4.6 Tipsand Tricks L o e e e e 67
5 Brief Introduction To TCL 69
5.1 TCL Variables e e 69
5.2 Table Of TCL Commands. 0 v i e e e e e e e e e e 69
53 TCLSyntax i e e e e e 70
5.4 Running TCL Commands From A File 71
5.5 Multiple Statements Per Line 71
5.6 COMMENLS v v v e e e e e e e e e e 72
5.7 Control Flow Commands e e 72
571 Theif Command e e 72

572 TheforCommand e 73

573 ThewhileCommand 73

5.74 Theforeach Command e 73

5.7.5 TheswitchCommand 74

5.8 Defining Procedures (Functions) 74
59 Arrays e e 75
500 LIStS . . o . o 75
5.11 String Manipulation L. 75
5.12 File Operations o v i it e e e e e e e e e e e 76
5.13 Introduction To The TK gui extension 77
6 Error Handling Techniques And Variables 78
6.1 Introduction e e e 78
6.1.1 Generaland CDB Errors e 78

6.2 Global Variables e e e 78
0.2.1 ©C . . e e e 79
HGST Confidential 2

CONTENTS

0.2.2 OIT . . . o i 79

60.2.3 SNS . 79

6.3 The Local Variable: cdberr e 79
6.3.1 Restoring defaultbehavior 80

6.3.2 Whyiscdberrlocal? L 81

6.3.3 SomeExamples. 81

6.4 Usingcatch e 81
6.4.1 Choosing Between cdberrandcatch L 0oL, 82

7 Random Number Generation 83
7.1 Introduction o . e e e e e e e e e e 83
7.2 BasicUseo e 83
7.3 UsingChannels e e e e e e 84
7.4 Using Histograms o e e e e e e e e e 86

8 Command Queueing 89
8.1 Introduction e e 89

8.2 General Usage Stacked Mode e 90

83 CapturingData 93

84 Concurrent Mode e 94

9 Using Hardware Data Generation / Compare 96
9.1 Introduction e 96
9.2 Understanding iTech Performance 96
9.3 Changing The Transfer Mode e 96
9.4 Suppressing Card to Memory Transfers 98
9.5 Returning to a Default State L 98
9.6 Example e 98

10 Startup Scripts 100
10.1 Included Startup SCripts o o o e e e e e e e e 100
10.1.1 checksum L e e 100

10.1.2 debug_puts e e 100

10.1.3 do . . o o e 100

10.1.4 device_OpS . . . v v v it e e e e e e 101

10.1.5 drive .. o o e e 101

10.1.6 endian e e e 101

10.1.7 file . . o o e 101

10.1.8 hdc e 101

10.1.9 ddentify o e 101

10.1.10 Mode_Page_Parms e 102

10.1.11 model_number e 102
10.1.02serial e e e e e e e e e 102
10.1.13SnS_tOOIS . . . o o e e e s 102
10.1.14uartmode L e e 103

HGST Confidential 3

CONTENTS

11 Expanding The TCL GUI
11.1 Working with Quick Buttons

11.2 The Action List

11.3 Preference Variables e e
11.3.1 Special Global Variables

A TCL Code Examples

A.1 Random Read/Write/Verify Application
A.1.1 BasicSequential ReadLoop
A.1.2 BasicRandomReadLoop
A.1.3 Creating AProcedure L
A.1.4 Adding LBA Range and Boosting Performance
A.1.5 Adding Writes And Compare e e
A.1.6 Adding ATKGUIFrontEnd

A.2 Reading Random Blocks From Every Drive On TheLoop

B EC Error Codes

C SCSI Commands

C.1 change_definition e e e e

C.2 close_zone . .
C3 e6.......
C.4 finish_zone . .
C.5 format_unit . .
C.6 inquiry
C.7 iolO.
C8 iol2......
C9 iol6.... ..
C.10 i032
C.11 i06
C.12 log_select . . .
C.13 log_sense . . .
C.14 mode_select10
C.15 mode_select6 .
C.16 mode_sensel0
C.17 mode_sense6 .
C.18 open_zone . .

C.19 persistent_reserve_in o i i e e e e e e e e e e e e
C.20 persiStent_reserve_OUL o v v vttt e e e e e e e e e e e e

C.21 prefetch
C.22 prefetchl6 . .
C.23 readl0
C.24 readl2
C.25 readl6
C.26 read32
C.27 read6
C.28 read_buffer . .
C.29 read_buffer32 .
C.30 read_capacity .
C.31 read_capacityl6

104
104
105
105
106

108
108
108
108
108
108
109
110
110

112

115
115
115
116
117
118
119
120
121
122
123
125
125
126
127
128
128
129
130
131
132
132
133
134
134
135
136
137
138
139
140
141

HGST Confidential

CONTENTS

C.32
C.33
C.34
C.35
C.36
C.37
C.38
C.39
C.40
C41
Cc42
Cc.43
C.44
C.45
C.46
C.47
C.48
C.49
C.50
C.sl
C.52
C.53
C.54
C.55
C.56
C.57
C.58
C.59
C.60
C.61
C.62
C.63
C.64
C.65
C.66
C.67
C.68
C.69
C.70
C.71
C.72
C.73
C.74
C.75
C.76
C.77
C.78
C.79
C.80
C.81

read_defect_datalO L 142
read_defect_datal2 e 142
read_long 143
read_longlho L e e e 144
reassign_blocks Lo Lo 145
receive_diagnostic_results L L. oL L oL e 146
releaselO L e e e e 147
releasedo L e e e e e e e 147
report_IUn e e 148
report_supported_opcodes e e e e 148
report_supported_tmf oL 149
TEPOIL_ZONES . .« o v v v e v v et e e e e e e e e e e e e e e e e e e e 150
report_zones_old e 151
TEQUESE_SEINSE « & v v v v v e 152
reservelO L e e e e e e 153
TESEIVED e e e e e 153
[ESCL_WItE_POINLEr o v v bttt e e e e e e e e e e e 154
reset_write_pointer_old oL 155
TEZETO_UNIt o o v o o e e e e e e e e 155
SANILIZE . . . v v o e 156
security_protocol_in_block oL 156
security_protocol_in_byte 157
security_protocol_out_block 158
security_protocol_out_byte 159
seek10 . . L e 160
seek10_641ba e e e e e e e 160
SEEKO . . . L e e 161
send_diagnostic L e 162
StArt_StOP_UNIE o o it e e e e e e e 162
synchronize_cache e e 163
synchronize_cachel6 L e 164
test_unit_ready e e e e e e e 164
18101082 165
Verify . . e 165
verifyl2 . . o o 166
verifyl6 . . o L e e 167
verify32 . . L e e 168
vu_commit_verify e e 169
vu_define_band_type 170
vu_query_band_information L. 170
vu_query_last_verify_error e e e 171
VU_TESEt_WIIte_POINLET o v v i it e et e e e e e e e e e e e e e e e 172
VU_SEt_WIItE_POINLET o v v vt e it e e e e e e e e e e e e e e e e 172
vu_verify_squeezed_blocks L. 173
writelO . . . e e e e e e 174
WIItE12 . . . o e e e e e e e 175
WIItE 16 . . . o e e e e e e e e e 175
WIIE32 . . o e e e e e 176
WIIEO . . . o o o o e e e e e e e 177
write_and_verify 178

HGST Confidential 5

CONTENTS

C.82 write_and_verifyl2 L 179
C.83 write_and_verifyl6 L L e 179
C.84 write_and_verify32 L e e e 180
C.85 write_buffer e 181
C.86 write_buffer32 e e e e e e 182
C.87 write_long e e e e e 183
C.88 write_longlh 184
C.89 WIItE_SAME v v v o o e e e e e e 185
C.O90 write_samel6 L e 186
C.O1 write_same32 e e e e e e e e e e e e 187
D CIL Commands 189
Dl oataget. . . . o o e e e e e e 189
D.2 buffadlerchksum e e e e 189
D.3 buffchecksum e 189
D.4 buffcompare 190
DS buffcopy o o 190
D.6 buffcrc e e e e e e 191
D.7 buffdiff e e e e e e 191
D8 buffdump. e 192
D.9 buffee e e 193
D.10 bufffillbyte e 194
D.11 buff fill float e e e e e e 194
D.12 buff fillint e e e e e e e e 195
D.13 buff Aillint64 e e 195
D.14 bufffillone L e 195
D.I5 bufffill patt 196
D.16 bufffillrand e e e e e 196
D7 bufffillseq o e e e e e e 196
D.18 buff fill short e e e e e e e 197
D.19 bufffill string 197
D.20 bufffill zero e e 197
D.21 bufffind. e e e e e e 198
D.22 buff findstr e e e e e e 198
D.23 buff format e e e e e e e 199
D.24 buffgetaddress L 199
D.25 buffgetcount 200
D.26 buffgetdsize e e 200
D27 buff getri o o e e e e e e 200
D28 buffgetsi e e e e e 200
D.29 buffgetsize e 200
D30 buffgets 201
D.31 buffload e e e e 201
D32 buffpeek 202
D.33 buffpoke e e e e 202
D.34 buffprint sgl e e e e 202
D.35 buffreset e e e 203
D.36 buffrsakeygen 203
D37 buffrsasign e e 203
D.38 buffrsaverify L e e e e 204

HGST Confidential 6

CONTENTS

D.39
D.40
D.41
D.42
D.43
D.44
D.45
D.46
D.47
D.48
D.49
D.50
D.51
D.52
D.53
D.54
D.55
D.56
D.57
D.58
D.59
D.60
D.61
D.62
D.63
D.o4
D.65
D.66
D.67
D.68
D.69
D.70
D.71
D.72
D.73
D.74
D.75
D.76
D.77
D.78
D.79
D.80
D.81
D.82
D.83
D.84
D.85
D.86
D.87
D.88

buff save e 204
buff setcount L. e e e 205
buff setdsize e e e e e e 205
buff set pqi_sgl L e e 205
buff Setri e e e e e e e e e 206
buff setsi e 206
buff setsize L e e 206
CONSOIE_SYNC o i e e e 207
device CouNt e e e e e e e 207
device Create e e e e e e e e e e e 207
device get allow_set_when_locked L 208
device getcallback create L 208
device getcallback lock L 208
device getcallbackremove L e e 208
device getcallbackrescan L. 208
device get callback "setindex" L 209
device getcallbackunlock 209
device getindex L 209
device getinterface L e e e e 209
device getlast_cmd L e e 210
device getlast_cmd_time L e e e e 210
device getread_xfer L 210
device et TECEIVE_COUNL vt ittt e e 210
device getreserved L. Lo e 210
device getsend_count e e e e 211
device gettimeout e e e e e 211
device getxfer_mode 211
device hbareset L e e e 211
device info L e e e 211
device info blocksize e e e e e 212
deviceinfochannel e e 212
device info codelevel 213
deviceinfohost e 213
deviceinfolun e e e 213
device info markersize e e e e e e e e 214
deviceinfomaxlba e e e e e 214
device info mdata_inline e e e e e e 214
device infomdata_size e e 215
device info phy_blocksize 215
device info productid L 215
device info protection L L e e e e 216
device info protection_location L e 216
device info protection_type 216
device info protocol 217
deviceinforto L e e e e e e 217
device infoserial L L e e e e e 217
device info serial_asic_version e e e e e e e e e 218
deviceinfotarget 218
device info vendor e 218
deviceinfo wwid L e e 219

HGST Confidential 7

CONTENTS

D.89 deviceislocked e 219
D.90 device list L e e e e e e 219
D91 devicelock e e e e e e e e 220
D.92 devicelock serial e e e e e e e 220
D.93 deviceremove e e e e e e 220
D.94 devicerescan L e e e e e e e 221
D.95 device set allow_set_when_locked 221
D.96 device setblocksize e e e e e e 221
D.97 devicesetcallback create e e e e e e e e 222
D.98 device setcallbacklock e e e 222
D.99 device set callbackremove e 222
D.100device set callback rescan L e e 223
D.101device set callback "set index" e 223
D.102device set callback unlock e 223
D.103device setindex e e e e e e e e e 224
D.104device set markersize e e e e e 224
D.105device setmaxlba L e e 224
D.106device set phy_blocksize L 225
D.107device set protocol L. e e e e e e e e e e e 225
D.108device set read_Xfer e e 225
D.109device setreserved e e e e e e e e e e e e e 226
D.110device setserial L e e e e e 226
D.111device set timeout e e e e e e e e 226
D.112device set xfer_mode L e e 227
D.113deviceunlock L e e e e e 227
D.114device unlock serial e e e e e e 228
D.115encode e e e 228
D.lI6eparse o o o e e e 228
DITT7err_Str. . . o o o e 229
D.118esource e e e e e e e e e e 229
D.119fcal abort_task_set e e e e e e 229
D.120fcalabts L e e e e e 229
D.I21fcal clear_aca s, 230
D.122fcal clear_task_set e e, 230
D.123fcal lip_reset e e 230
D.124fcal port_login e e e e e e 230
D.125fcal process_login L e e e e 230
D.126fcalreset L e e e e e e e 231
D.127fcal tar@et_reset e e e e e e 231
D.128fcal term_task L e, 231
D.129feedback asynccqe e e e e e e e 231
D.130feedback color e e e e e e e 231
D.131feedback default 232
D.132feedback maxlen e 232
D.133feedback min L e e e 232
D.134feedback pop L e e e e e e e e 233
D.135feedback push e 233
D.136feedback showatafis e 233
D.137feedback showedb e 233
D.138feedback showeqe 234

HGST Confidential 8

CONTENTS

D.139get_cil_list e 234
D.140get_keq str o L e e e e 234
D.I4Tinit . . . oo e 234
D.142niagara_log_puts e e e e e e e e 235
D.143nvme dump_cq o e e 235
D.l44nvme dump_Sqo e 235
D.145nvme get callback reset 236
D.l46nvme getcq_idso e 236
D.l47nvme getlast_cid L e e e e e e 236
D.148nvme get last_dword e e 236
D.149nvme get last_dword0 236
D.150nvme get last_dwordl 237
D.151nvme get last_err_logpage e e 237
D.152nvme get last_status e e e e e e e e e e e e 237
D.I53nvme get page_Sizeo e e e e e e e e e 237
D.154nvme getregister e e e e e 237
D.155Snvme get sq_ids e e 238
D.ISONVIME IESEt . . . o v v vt e e e e e e e e e 238
D.157nvme set callback reset 238
D.I58nvme set page_SiZe o i i i e e e e e e e e e e e e e 239
D.I59nvme set re@ister oL e e e e e e e e e e e e e 239
D.160parse e 239
D.16lpcie getconfig L e e 240
D.l62pcieset config e e e e 240
D.163perfentclicks o . e e e e e 240
D.l6dperfentcount oL e e e e e e e 241
D.165perfentdelay e 241
D.166perfent freq 241
D167pqidump_iq e e e e 241
D.I68pqi dump_oq e e e e e e e e e 242
D.169pqgi et register e e e e e e e e e e 242
D.170pgisetregister e e e e 242
D.171qetl getauto_incr e e e 243
D.172qctl getignore_queue_full L 243
D.173qctl getmax_depth 243
D.174qctl get num_queued L. e e e e e e e e e e 243
D.175qctl get num_waiting e e e e e e e e e e 244
D.I76qctl gettag_type e e e e e e e 244
D.177qetlidx_info 244
D.178qctlrecy L e e e 244
D.a79qctlrecvall L e e e e e e 245
D.I80qetlrecvtag o . e e e e e e e 245
D.8Iqetlsend e 245
D.182qetl set auto_inCro e e e e 246
D.183qctl setignore_queue_full L 246
D.184qctl setmax_depth e e 246
D.I85qctl set next_tag e e e e e e e e e e 247
D.186qctl settag type e e e 247
D.187qctl table_info L 247
D.188qctl tag_info e 248

HGST Confidential 9

CONTENTS

D.189gmode concurrento e 248
D.190gmode disable e e 248
D.191gmodeinfo e e e e e e e 248
D.I92gmode pcie e e e e e e e 249
D.193gmode stacked 249
D.19%rand L 249
D.195rand addhist L e e e e e e e 250
D.196rand close e 250
D.I97rand float e 251
D.I98rand frange L e e e e e 251
D.199rand int L L e e e e e e e e 251
D.200rand open L. e e e e 252
D201randrange e e e 252
D.202rand seed 253
D.203rand showhist oL 253
D.204randlba L L e e e e e e 254
D.205sas abort_task_Set e e 254
D.206sas clear_aca e e e 254
D.207sas clear_task_Set e e 254
D.208sas get_pod_address e e e e 255
D.209sas get_sas_address e e e e e e e 255
D.210sas get_speed e 255
D211saslink reset s, 255
D.212saslun_reset e 255
D.213SaS NEXUS_TESEL . . . v v v v v o o e e e e e e e e e e 255
D214sasnotify oL e e e e e 256
D.215sas notify_epow e 256
D.216sas phy_reset oL e e e e 256
D.2178aS POWEI_MANAZE . . . « o v v v v e e e e e e e e e e e e e e e e e e e 256
D.218sas QUEry_asynC_eVeNt v v v it e e e e e e e e e e e e e e e e e 256
D.219sas query_task_Set e e e e e 257
D.220sas 1eset e e e e e e e e e e 257
D.221sas set_sas_address e e e, 257
D.222sasset_speed e e 257
D.2238ata COMIESE o o v it e e e e e e e e e e e e e 258
D.224sata get e e e e e e e e e 258
D.225sata get active L . e e e e e e e e e e e e e e 258
D.226satagetcontrol Ll e 259
D.227sata GELeIrOr e e e 259
D.228sata et Statlis o e e e e e e e e e e e 259
D.229sata get_auto_tags e e e e e e e e e e e e e e e e e e 259
D.230sata get_clear_ ncq_err L e e e e e e e e e 259
D.231sataget_speed e 259
D.232satapm e 260
D.233sata pm aggressive oo i e e e e e e e e e e e e e e 260
D.234sataread_pOrt_TeES . . .« v v v v i e 260
D.235sata set_auto_tags o i e e e e e e e e e e e e e e e e e 260
D.236sataset_clear_ nCq_eIT L e e e e e e e e e e 261
D.237sataset_speed e e 261
D.238sata SOft_IeSet e e e 261

HGST Confidential 10

CONTENTS

D.239sata srst e e e e e e e e e e e e 261
D.240scsi @bOIt o e e e e e e e e e e e e e 262
D.241scsi abort_tag e e e e e e e e e e e e e 262
D.242scsiclear_queueo e e e e e e e e e 262
D.243scsi deviCe_1eSet v v L e e e e e e e e e e e e e 262
D.244scsiid_mode L e 262
D.245scsippr_mode e e 263
D.246scsi ppr_mode_parms oL e e e e e e e e e e e e e 263
D24TSCSITESEt . . . o v ot e e e e e 263
D.248scsisync_mode L e e e e e e e 264
D.249scsi sync_mode_parms oL i e e e e e e e e e e e e e e e e e e e 264
D.250scsi wide_mode e, 264
D.251scsi wide_mode_parms e e e e e e e 265
D.252sop getcdb_iu_type e e e e e e e e e e e 265
D.253sopset cdb_1U_type o o e e e e e e e e e e 265
D.254transport_cdb getalways_ono e 265
D.255transport_cdb get desc_format L. L 266
D.256transport_cdb get pad_boundary 266
D.257transport_cdb get padding e 266
D.258transport_cdb get protocol e e e 266
D.25%transport_cdb set always_on e e e e e 266
D.260transport_cdb set desc_format 267
D.261transport_cdb set pad_boundary 267
D.262transport_cdb set padding 267
D.263transport_cdb set protocol L. e e e e 268
D.264uilcount L. e e 268
D.265uil create L. e e e e e e e e e e e e e 268
D.266uil et aUtOSENSE e e e e e e e e e e 268
D.267uil getbuffsize L 269
D.268uil get callback create L e e e e e e 269
D.269uil get callback remove L e e e e e 269
D.270uil get callback "setindex" 269
D.271uil geterr_info L 269
D272uil getfilter e e e 270
D.273uil getindex e 270
D.274uil get max_xfer_len e 270
D275uil getspeed e e e e e e e 270
D.276uil gettimeout e e 270
D.277uil @et Version e e e e e 271
D.278uilinfoo e 271
D279uil list o o e 271
D.280uilload L e 271
D.28Tuilmessage e e 272
D.282uilname e e e e e e 272
D.283uilremove e e e 272
D.284uil Set autosense o .o e e e e e e e e e 273
D.285uil setcallback create L. e 273
D.286uil set callback remove L e e e e e e e 273
D.287uil set callback "setindex" e e e e 274
D.288uil setindex e e e e e e e e e 274

HGST Confidential 11

CONTENTS

D.28%uil setloglevel e 274
D.290uil setspeed e e e e 275
D.291uil settimeout e e e e e e e e e e 275
E Serial Commands 276
E.l get_serial_Llist. e 276
E.2 sabortCDB e e e e e 276
E3 scdb . . . o e e e e e e e 276
Ed sclose e e e 277
ES sdelay L e e 277
E.6 secho e e e e 277
E.7 sget_speed e e 278
E.8 sindex e e e e e e e 278
EO Si0. . . . e e e e e 278
E. 10 slip o 279
E.IL squery o o e e 279
E. 12 sread e e e e e 279
E. 13 sreadsp o e e e e e e e e e 280
E.14 srescan e e e e e e e e 280
E.15 sreset e e e e e e 281
E. 16 sset_speed L e e e 281
E.17 sspeed o o o e 282
E. I8 Sstatus. e e e e e e e e e 282
E.19 suart2 e e e e e 282
E.20 suart3 e e e 282
E21 suil e 283
E22 SVersion e e e e e 283
E23 SWIIte e e e e e e e e e 284
E24 sxfer e e e e e e 284
Index 286

HGST Confidential 12

Chapter 1
Introduction

In this manual, we look at Niagara, which is built on the CIL Drive Testing System, and how to use its various
capabilities. CIL stands for Common Interface Layer. The CIL is named to emphasize the way the software is
built: a set of testing components combined to form a full featured tool. The strength of this architecture is that it
makes Niagara easy to modify and expand.

We will also look at Niagara’s graphical and command line interface. The graphical interface is designed to
be intuitive to those who are new to Niagara and convenient for those who have learned the tool. The command
line interface is a more powerful tool that incorporates the TCL language. The command line interface is flexible
and powerful. In fact, the entire GUI interface is built from the command line features alone!

1.1 Intended Audience

This manual is intended for someone who already understands concepts related to SCSI and drive testing.
If terms like CDB are not familiar to you, I recommend learning more about SCSI before proceeding with this
manual. Niagara can be very destructive software if misused. Trying out features at random can easily render
a drive into an unusable state. Setting up Niagara carelessly on a new system can lead to a system that has its
internal drives open for testing (this is a bad thing).

This manual does not assume that you are a programmer. An understanding of a language is beneficial for
following some of the examples, however. The early chapters of the manual do not cover programming at all,
while the chapters near the latter end of the manual begin to cover TCL, the scripting language integrated into
Niagara.

1.2 What This Manual Covers

This manual is not meant to contain every last detail about Niagara and the CIL. The goals of the manual are
as follows:

e To give the user an idea of Niagara’s basic capabilities

e To inform the user of Niagara’s capabilities that can be further understood by reading other manuals.
e To provide a reference to CIL commands.

In addition to this manual, The CIL Programmers Guide provides the following information:

e How to write CIL programs in C/C++

e Basic information on how to link the CIL to other languages

e How to extend the CIL’s TCL interface using C/C++

e How to create a CIL device driver

In addition to this manual and the programmer’s guide, programmers will find it helpful to have reference
manuals available for the C++ and TCL languages (the two languages used to build Niagara and the CIL).

1.3 Basic Overview Of CIL Features

In this section we talk about major features of the CIL. Note that the CIL you are using may have more
capabilities than the ones bulleted below.

HGST Confidential 13

CHAPTER 1. INTRODUCTION

1.3.1 Expandability

The CIL is very expandable. The key to this expandability is the UIL (Universal Interface Layer). This layer
is an abstraction that all devices communicate through. This layer is very abstract (it is loosely based on UNIX
device driver design). The abstract nature allows the UIL to be expanded to control everything from a SCSI/FCAL
device to a serial port, a power supply, or virtually any other device.

There are several layers to the CIL that can be expanded (this is explained in more detail in the CIL Program-
mers Guide). At the upper layers, new procedures can be added to TCL directly from the command line. At lower
layers, we find a C interface for adding higher performance TCL commands, a lower-level C interface for writing
custom apps (or linking to other languages) and another layer for adding support for new devices. Adding a fea-
ture to a layer generally expands the capabilities of all of the upper layers as well. See figure 1.1 for a diagram
that shows the CIL’s architecture.

Command Line GUI Interface TCL Interface Layer

,,,,,,,,,,,,,,, \/

TCL Interpreter TCL

*****************]

,,,,,, \
FCAL Driver Serial Driver Test Driver Driver Layer

Figure 1.1: CIL Architecture

Most of CIL’s expansion is accomplished through dynamic libraries. This is a plus because it means that
features can be added to the CIL without reinstalling it.

1.3.2 Portability

One of the reasons that TCL was chosen was due to its portability, all the way to the graphical user interface.
This, in combination with all ANSI standard C code, makes the CIL portable across multiple architectures. Most
TCL scripts written on one architecture (such as Windows) will run on a different architecture (such as Linux)
without change. This means many tests will only have to be written once. The C interface also provides an
abstraction that permits a CIL application written in C to compile and run on different platforms without modifying

HGST Confidential 14

CHAPTER 1. INTRODUCTION

the source.

1.3.3 Quick Survey Of Current Features (Subject To Expansion)

It is difficult to provide a concrete feature list for the CIL, namely because the CIL is so expandable. Most
features that will be needed can created as they are needed. Below, however is a list of currently implemented

features:

o GUI Interface

Support for all standard CDB and ATA Commands
New CDB and ATA commands can be added/modified easily
Sense Decoding

Customizable quick buttons to speed frequently used features

Full suite of standardized tests (Sequential Read, Random Read, Seek Tests, Command Queuing)

Additional tests can easily be added

Easily perform an operation on multiple drives simultaneously
Quick Mode Sense / Select

Load Microcode on drive

Log dump

Buffer Editor

e Command Line Interface

Access to all features available in GUI

Full TCL scripting language support

Full TK GUI extension support

Dozens of added TCL commands that are specially designed to ease drive testing
Command History

“Easy” network socket support (via TCL)

DMA support for many drivers

e C Interface

Ability to add commands to TCL that fully integrate with the CIL
Command Queuing'

Command Aborts?

Card and Device Resets®

Lip control*

Ability to create new device drivers

INot all drivers support command queuing
2Not all drivers support aborts

3Not all drivers support resets

“4Not all drivers support LIPS

HGST Confidential

15

Chapter 2

Using The Graphical User Interface

2.1 Overview Of The Main Window

When you first start Niagara, you see two windows, one of which is the terminal (or Console) window. An
example terminal window is shown in figure 2.1. Through this window you can enter commands, write scripts,
and see the results of your commands. The other window is the GUI front end to Niagara, called the Command
window. This window makes certain operations easier and provides customizable buttons and windows to make
common repeatable tasks easier to use. An example Command window is shown in figure 2.1. Note that because
the GUI can be customized, your Command window might not look exactly like the one shown.

| Niagara Command (uil=aspi, suil=serial) E]@E]
File Configuration Preferences ReportForms Help

’ 1 change_definition
&
amc_xd_wrrd
BMC_xp_write
format_unit

| Niagara Console (uil=aspi, suil=serial)

File Conscle E Interp Prefs History

(uil=0:asp = ineg

CMD: 12 00 00 01 00 00

N linked_skip_read
limked_skip_write

uent Tooks

Inquiry Prep Drive...

Caleulator.. Inquiry Page 3 Quick run, ..

Download Code. . Lock Drives... Start Uit

ETM Decoder...

Log dump... Stop Unit

o mend. .. e Dump., . SUper C90.,

Farmat. .. Mode Fields. .. Test Ready

Gold Rush.. Mode Parms...

{
uil={0,a5pi) suil=(2,5etial) dev=(0,100) Current Dir: CifMiagara

Figure 2.1: Niagara GUI

At the top of the Command window, there are tabs labeled SCSI and ATA. When users are interfacing with
a SCSI drive, the SCSI tab should be selected so that all of the SCSI tools are available. Likewise, the ATA tab
should be selected when interfacing with an ATA drive so that all of the ATA tools are available.

Each SCSI/ATA tab of the Command window consists of three sections. The Device List section is used to
select devices and the current UIL driver. This section is described in section 2.2. The Action List section contains
groups of actions that can be executed with the GUI. These groups include:

e CDB Commands: This group contains all of the CDB’s that can be sent to a drive. CDB Commands are
described in more detail in section 2.3 on page 18.

HGST Confidential 16

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

o ATA/ATA Pass-Through Commands: This group contains all of the ATA or ATA Pass-Through com-
mands that can be sent to a drive.

e Special Commands: This group contains all of the special commands that can be sent to a drive.

e HDD/SSD Tools: This group contains additional tools to interact with a drive. A user can also add their
own custom tools. Details of how to do this can be found in Appendix 11 on page 104

The Quick Buttons section of the Command window contains a set of quick buttons. This customizable set
of buttons are used to access frequently used commands quickly. The default set of buttons contain the following
types of functions:

e Shortcuts to Common CDBs: Often used CDB’s such as “Test Unit Ready” and “Inquiry” are available
with the click of a button. See section 2.3.1 for more information.

e Buffer Management Functions: These functions provide ways to see information that was transferred
from the drive and to set up data to be transferred to the drive. See section 2.4 for more details.

e Download Code: This allows for microcode to be uploaded on a drive. See section 2.5 for more details.
e Format: This button provides users the chance to format their drive. See section 2.6 for more details.

e GoldRush: This button brings up the Gold Rush GUI, which provides a quick test of new firmware. See
section ?? for more details.

e Lock Drives: This button provides users the chance to lock drives or disable system drive removal. See
section 2.8 for more details.

e Log Bin: This button provides a log dump of a drive. See section ?? for more information.

e Mode Selection: This button brings up a dialog that allows for quick mode sense and selection operations.
See section 2.9 for more details.

e Super CSO: This button brings up the Super CSO GUI, which contains a set of typical and customizable
drive tests. See section 2.10 for more details.

Also in the Quick Buttons section is the Frequent Tools tab, which presents a list of the last tools used by the
user.

2.2 Device Selection

The first panel of the Command window offers a way to easily choose what devices you would like to send
a particular command to. It is important to note that not all commands work with the chosen device list, most
CIL command line commands do not, whereas most of the GUI script commands do. To create scripts that take
advantage of device selection please see 11.3.1 on 106. Devices can be selected individually by clicking on
their corresponding radiobutton, or they can be selected in a group by unchecking the Synchronize Console/GUI
button and selecting as many of the drives’ checkboxes as desired. The device list also provides detailed drive
information, while each device’s vendor id and target id initially displayed, by holding the mouse over a certain
device you can find see the rest of the device info in the information status bar at the bottom of the Command
window. The information status bar displays serial number, code level, block size, and maximum LBA.

HGST Confidential 17

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

Ccsecue J|_rils J|_resss JJ_cose

Figure 2.2: Example of a CDB GUI

2.3 Executing A CDB Command

Executing a CDB command through the GUI is trivial. Double click on a CDB in the CDB list-box (in the
Action List panel of the Command window). This will bring up another window that is specific to that CDB.
This GUI allows you to change various parameters and to send the command to all drives you have selected by
clicking on execute. All output will be displayed in the Console window. Clicking on help will print out detailed
help information in the Console window for that particular CDB. Cancel simply closes the window. In the CDB
command window (figure 2.2 on page 18) you will notice bytes representing the CDB and transfer size just above
the execute, help, and cancel buttons. This is the interactive real-time CDB builder. As you change values in the
fields you will notice that the CDB builder will update to reflect these changes.

ATA and ATA Pass-Through commands, as accessed from the Action List in the ATA tab, work in the same
manner.

2.3.1 Quick CDB Commands

Quick CDB commands are Quickbutton scripts that run a CDB on all selected devices without popping up a
GUI, these include start unit and stop unit (both with immediate bit turned off), test unit ready, and inquiry (on
page 0 with evpd off). They offer a way to quickly test to see if a drive is responding and to spin it up or down.
All output goes to the Console window.

2.4 Buffer Manager

Niagara doesn’t only send drive commands, but it is able to keep track of all the various buffer information as
well. Three utilities form the entire buffer management suite: Buffer Dump, Buffer Diff, and Buffer Fill.

24.1 Buffer Dump

Buffer Dump (figure 2.3 on page 19 allows you to see what is in all of your buffers and save them to a file. The
default buffer when the program begins is the receive buffer (Buffer 1). You can set your send and recieve buffers
by using the slider and click the respective button. To dump the buffer to the command line window simply click

HGST Confidential 18

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

on the dump button. To save the buffer to a file either type in the filename manually within the file entry or choose
browse for a file selection dialog. After configuring the tool to output to a file you can click the dump button to

save the buffer to the file.

.\ Buffer Manager

Format buffer as:

[~ Preview

¢ Basic advanced

& Byte © Wword Double

Buffer Dump Buffer Diff Buffer Fill
Buffer Selection Data

1 Cffsek: 0
L SEﬂdl RBCV' Length: 512
Format

Cutput
% Console Window

" File |

Format: © Binary ASCID

Command

buff dump 1 0 512

Dump |

Exik |

Figure 2.3: Buffer Dump

HGST Confidential

19

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

2.4.2 Buffer Diff

Buffer Diff (figure 2.4 on page 20 allows you to compare the contents of two buffers. You can select either a
buffer or a file containing a buffer dump to compare. After selecting the two buffers you can click the diff button

to compare the two buffers.

W Buffer Manager

Buffer Dump Buffer Diff Buffer Fil

Left Side

Filenarne ar Buffer: | j [Ell BuFFer...l
Offset: | [T Max Length: 256

Right Side

Filzenarne or Buffer: | ﬂ [Ell BuFFer...l
Offset: |III [T MaxLength: 256

More Options :=-:=-|

ot | Exi

Figure 2.4: Buffer Diff

HGST Confidential

20

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

2.4.3 Buffer Fill

Buffer Fill (figure 2.5 on page 21) does the opposite of Buffer Dump, it allows you to insert values into a
buffer. There are seven different ways you can do this.

| Type Name | Description ‘
byte fill in one byte continuously for length bytes
pattern fill in a certain pattern of bytes for length bytes
string write a specific string to a buffer
int write a specific integer to the buffer
random fill in random bytes for length bytes
sequential | fill in sequential byte order from start to stop for length
bytes
load load an entire file into a buffer

| Buffer Manager

Buffer Dump Buffer Diff Buffer Fill

Buffer Selection
0

| Set to send index

" byte:

" pattern:
" skring:

ink:

O

randam:

sequential: Skark: Skop:

[oad: ﬂ b

{+ i

T

Cffset: 0 Length; 512

Al | e |

Figure 2.5: Buffer Fill Tool

HGST Confidential 21

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

2.5 Download Code

The Download and Save GUI downloads an entire microcode chunk. (figure 2.6 on page 22) The default file
it looks for are .bin files, which is the entire microcode binary chunk. Clicking on Browse opens a file selection
window which will put what you have selected in the File Name entry. Pressing the Execute button actually
loads the microcode. Using the Advanced tab, the chunk size to download code can be adjusted. Once a drive is
completely finished, the next drive undergoes the process.

. dnld

» Execute Close
]

Figure 2.6: Download and Save

2.6 Format

The Format tool can be used to format the drive with different parameters. Figure 2.7 shows the Format GUI.
A drive’s block size or max LBA can be adjusted by entering new values in the appropriate fields. When you are
satisfied with your parameter selection, the Format can be started by selecting the Format button.

.1 Format |:| |§ El
517

2415919104 Set ko Max

A
A
|

Figure 2.7: Format

HGST Confidential 22

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

2.7 Log Bin

The log bin utility allows you to perform a logdump. Use the logdump utility to parse the files produced by
this utility. Figure 2.8 shows the logbin dialog.

Logbin is designed to dump logs from multiple drives at a time (if needed). All of the selected drives in the
Command window are dumped (deselect the “Synchronize Console/GUI” checkbox to select multiple drives).
Files are dumped in the “base Directory” using the “Filename Pattern”. As set, the files will be named with the
drive’s serial number, code level and index number.

M Logbin Generate...

Base Directory (C:/Miagara-customer Erowse
0: aspi =
Rescan drives

Target LogBin Cutput S/ Drive Type Interface
[T HITACHI HUS723030AL4640 2922 |Iogbin_-:utput_‘(TG145J.°._a922_0.bin WTal4514 Mars-E0 2A5
™ Select &l Drives ™ Incude Extended Drive Usage Log
Deselect Duplicate Drives [Dump Debug Snapshats as . d3k files
Dump &l | Close Window

Figure 2.8: Log Bin

HGST Confidential 23

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

2.8 Lock Drives

This tool serves two main functions. First off, each detected device can be locked by Index or Serial Number.
Locked devices will not accept drive commands. Secondly, the Remove system drives option can be enabled or
disabled to determine if drives that have a Master Boot Record present are removed from Niagara. Figure 2.9
shows the Lock Drives GUI.

W Lock Devices |Z| |E :

Classic wiew

Device

Femoved Svskem Drives

Figure 2.9: Lock Drives

HGST Confidential 24

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

2.9 Mode Selection

One advantage of using a GUI over the command line is that it can present a lot of information in an easier to
read format and it can eliminate in-between setup steps. The Mode Parms and Mode Fields GUIs do both (figure
2.10 on page 25); it allows you to look at all the bytes of a mode page on a byte by byte basis, and it eliminates
the setup for the mode select, allowing you to simply change the values. When using Mode Parms or Mode Fields
on multiple drives, only the first drive will receive the mode sense but all the drives will receive the mode select.

Make sure that all the drives selected have compatible mode pages.

W Generic Modepage Parameters Changer

made_sense and mode_select

Eytes Yalues Mode Page
0,1,2,5: o 0x00 O 0x04
4,5,6,7: O w01 O 0x0C
&8,9,10,11: {7 ow0z 7 0xl1d

12,13,14,15: O Ox03 0 0Ox19
16,17,18,19: COx04 Oxld
20,21,22,23: & oui7 Oxlc
24,25, 26,27 C 0x08 Ox37
28,29,30,31;

Maote: Only firsk device chosen is sensed Fagecode: |00

All chosen devices are mode selected SubPagecode: |0x00

DB Selection]
Page Control Field

" mode_selects " mode_senset f* Current ™ Defaulk
{* mode_select10 '+ mode_sensell (" Changeable ¢ Saved

| Save Pages
Mode Select | Mode Sense | Close |

= B)X]

Figure 2.10: Mode Sense Select

HGST Confidential

25

CHAPTER 2. USING THE GRAPHICAL USER INTERFACE

2.10 Super CSO

Super CSO is a hard drive workload simulator that is designed to be usable for beginners, highly configurable
by intermediate users, and extendable for advanced users. Figure 2.11 shows the main Super CSO GUI. See the
Super CSO Tutorial, located in Super CSO’s Help menu, for a complete explanation of Super CSO’s features.

| Super, C50 - Basic.tcl agara/SuperCS0/fguifServer_Tests)

Tests
Load Test| Rebuild Tree

Server_Tests/
Advanced.tcl
ATA_ DA Data_Compare
Basic.tcl
l-Tech_Data_Compare.tcl
SATA_NCO_Data_Compa
SCSI_HBA_Data_Cormpan

User_Tests/
test_termplate.tcl

File Edit Tools Settings Window Help

+ Commands/Workloads

Reset |Refresh

SCEI
{+ 10-byte CDB's

™ 16-byte COB's

Command %

Commands % FUA

Error Reporting
[~ write Errors to a File

50
50

Readid
Writed 0

Wiriteerify1 0 6] Q
Werifyl0 Q
WiriteSarme 6]
Seek10 6]
Prefetch 6]

Write_Data Generators
(* Random Data
" User Dats

~

o

Workloads
Mixed |Cache Stress |Packed |Butterly Streﬂ

Queue Depth

Test Stop-On-Error Conditions

(¥ Fatal Errors

("~ Specific Errors © Except Specific Errors

WCG List
LIEC List

" Any Error

LB mir 0% mae [100%
Transfer Length min 1 ma |1
Seek Lencth tmir (0% ma [100%
Random % 0
Reverse Sequential 9% |0
Thip %]
LB hask r
£ ¥
Figure 2.11: Super CSO
HGST Confidential 26

Chapter 3

Basic Use Of The Command Line
Interface

3.1 Introduction

This chapter explains the basics of using the command line interface. The command line provides a shell
like interface to a device and provides more powerful features (such as scripting) than are provided through the
Graphical User Interface alone. The drawback to this is that the command interface requires a commitment from
the user to learn it (and lacks the intuitive nature of the graphical user interface). Once learned, however, the
command interface will likely become the interface of choice for many users.

We will begin by looking at the format for drive (CDB) commands followed by commands to control buffers
and other features of the CIL. Note that in some cases, we will be using a bit of TCL code to explain a command
in more detail. Feel free to reference chapter 5 on page 69 (which gives an introduction to TCL) whenever you
are unclear about what an example is doing.

3.2 Basic Command Entry

To start, we will issue a simple inquiry command. Start the CIL and type the following:
ing

This will perform a device inquiry and output the results, just as it would from the graphical user interface.
You could have also typed:

inquiry

IMPORTANT: The current device in the command line is completely independent of what is selected in
the GUI. Look at the command prompt to see what the current device is. An example command prompt would
be ’ (uil=0:sg) (dev=0)>’. This command prompt tells us that sg is our current uil and device #0 is our
current device. See section 3.4.1 on page 48 for information on how to select devices. Also the command line
interface only allows you to interface a single drive at a time. The GUI allow you to select multiple targets.

Most drive commands have 2 forms, a descriptive form (inquiry) and a short form (inq). To see a list of all of
the drive commands available type:

get_cdb_list

This will display a list containing all available device commands. Note that only the long form of the com-
mands are printed. In addition to the commands shown by get_cdb_11ist, you also have access to all of the
built in TCL commands (such as set, if, and puts). Through TkCon', you also have access to all of the OS
commands provided by your shell>. TkCon also gives you the option of using the interface as a calculator, for
example:

expr 5+5

ITkCon is a free command line extension program, written in TCL by Jeffery Hobbs. For information on the latest version, go to
http://tkcon.sourceforge.net
2In Linux this includes commands such as ls, cp, and rm. In Windows this Includes commands such as dir, copy, and del

HGST Confidential 27

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

One thing to note is that, if you do not include a decimal point in your calculations, you will get integer math.
Fix this by post-fixing . 0 at the end of one of your numbers. Here is an example:

> expr 1/3
0

> expr 1/3.0
0.3333333333

> expr 1.0/3.0
0.3333333333

> expr 1.0/3
0.3333333333

3.2.1 Getting Help

One useful way to see help is through the tab key. Type the first letter of a command and hit tab. The system
will respond by printing all of the possibilities. You can hit tab at any time during command entry. When you hit
tab, the following rules are used:

1. If there are multiple possible completions for the command as you have typed it thus far, these completions
are shown.

2. If there is only one completion for the command as you typed it thus far, the command will be completed
for you.

As an example of the second rule, enter inqu and type tab. The rest of the command will be typed for you.
To see the short form of a drive command, type the command name followed by -help®. For example:

inquiry -help

This example will output the following data:
kAR kA Ak hkkhk A hkkhkAhhhkhkhkhAhhkdrkhdrhkhhrhkdrhkdrhk xkkx*
Command Name (s) : inquiry, ing
Description: Performs a device inquiry.
Default Parm Order: pagecode, alloc

Buffer Data Sent: <None>
Buffer Data Received: <alloc> Bytes

Parameters:

Name Range Default | Description
___ +__________________________________
—cmddt (0 or 1) 0x0 | Include Command Support Data

3This only works with CIL commands, generic TCL commands do not support the -help option

HGST Confidential 28

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

—evpd (0 or 1) 0x0 | Enable Vendor Product Data

-pagecode (0-0xFF) 0x0 | Page Code

-alloc (O-0xFFFF) 0x100 | Allocation Length in Bytes

—control_byte (0-0xFF) 0x0 | NACA | FLAG | LINK

-uil (0=2) <current> | Temporary UIL override

—dev (0-2) <current> | Temporary device index override

-ri (0-7) <current> | Temporary receive buffer override

—-cmd_timeout (0=7?) 0 | Persistent timeout override (0=no
| override)

—dummy (0-1) 0 | Don’t actually send the command

Looking at other data returned by ing -help, we also see the each parameter has a range and a default
value. Any parameters you exclude when calling a command use this default value. With this in mind you can
see what the default operation of any command is by using the —he 1p option and examining the default value for
each parameter.

In the data returned by ing -help there is also a section describing the range of each parameter. What
happens if you go outside of this range? Basically your result is bit truncated to fit in the desired range. As an
example, if a parameter has a range of 0-0xFF and you enter 0x123456 as a value, the low order 8 bits are
used so you will actually be sending 0x56.

3.2.2 Command Options

This brings us to our next topic, command line options. As you probably already know, there is more than one
way to call the inquiry CDB. As the GUI allows you to customize the format of the inquiry you will receive, the
command line offers the same functionality. Note the parameter list given in the help. Here we see a ~-pagecode
option. Let’s try using this option to do an inquiry on page 0x80%:

ing -pagecode 0x80 —-evpd 1

Note that you need to prefix 0x to all hexadecimal numbers. Any number without a preceding Ox is considered
to be in decimal form. Using the above pattern, we can specify any of the options available to the inquiry
command. The only problem is that it can be tedious to type in all of the parameter descriptors. Because of this,
there is a shortcut to the above form:

ing 0x80 —evpd 1

This works because ~-pagecode is defined as the first parameter in the Default Parm Order>. Here is
the Default Parm Order for the inquiry command:

Default Parm Order: pagecode, alloc
This tells us that:

ing 0x80 200 -evpd 1
is the same as:

ing -pagecode 0x80 -alloc 200 -evpd 1

and:

4Calling this command as shown in the example will likely throw a check condition from the drive, generally you need to turn on the evpd
bit to read this page
5 To see the Default Parm Order for a CDB command, type the command’s name with the -help option

HGST Confidential 29

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

ing -alloc 200 -pagecode 0x80 -evpd 1

Note above that when you explicitly use the -pagecode and —alloc options, the ordering is not important.
When you exclude the -pagecode or —alloc option, however, the ordering of the arguments must match those
specified in the Default Parm Order. You can also mix default parameters with options as shown below:

ing 0x80 -evpd 1
This is the equivalent to:
ing -pagecode 0x80 -evpd 1

Once you start using - options, you can not use the shorter form for the remainder of the line. The following,
for example, is not allowed:

ing —-evpd 1 0x80

Because we entered the —evpd option, the interpreter does not know what option 0x80 relates to. The
correct form (assuming you want 0x80 to represent the page code) is ing 0x80 -evpd 1. In short, look
at the Default Parm Order in a command’s —help description to see which parameters can be entered
without using a — option in front. As a final note, because this is a programming language, you can use variables
and functions in place of parameters. See the chapter on TCL programming (page 69). Here are some examples:

>set page 0x80
>ing $page -evpd 1

>set blocksize 512
>readl0 0 [expr 10 * Sblocksize]

3.2.3 Using Keywords In Place Of Numbers

In place of parameters, you have the option of using keywords. These three commands, for example, do the
same thing:

ing 0x80 -evpd 1
ing 0x80 —-evpd on
ing 0x80 -evpd true

The interpreter above works by substituting certain keywords for values. Here is a table of possible substitu-
tions:

Keyword \ Substitution

start
stop

1

0
true 1
false 0
1

0

[

[

on
off
send
recv

buff get si]
buff get ri]

HGST Confidential 30

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

3.3 Table Of CDB Commands

The get_cdb_11st command can be use to get a list of current commands. However, for you convenience,
the list is also given here. Note that this list might not be completely up to date (get_cdb_11ist always is):

Command Name Short Form | Description
change_definition chdef Changes Drive Definition (see page 115)
1 None Performs one or more reset write pointer op-
cLose_zone erations (see page 115)
P log_dump | Retrieve internal drive logs. (see page 116)
finish None Performs one or more reset write pointer op-
thish_zone erations (see page 117)
. ¢ " fmt Performs a physical format of the drive me-
ormat_unt dia. (see page 118)
, , ing Performs a device inquiry. (see page 119)
inquiry
610 None Send a Generic 10 byte CDB (see page 120)
10
1012 None Send a Generic 12 byte CDB (see page 121)
iol6 None Send a Generic 16 byte CDB (see page 122)
1032 None Send a Generic 32 byte CDB (see page 123)
106 None Send a Generic 6 byte CDB (see page 125)
log_select lgsel Clears statistical information. (see page 125)
1 lgsns Retrieves statistical data about the drive (see
og_sense page 126)
q lect10 mds110 Specifies device parameters to the target. (see
mode_selec page 127)
q lecté mdsl6 Specifies device parameters to the target. (see
mode_selec page 128)
mdsnl0 Reports various device parameters. (see page
mode_sensel(128)
mdsn6 Reports various device parameters. (see page
mode_senseb 129)
open_zone None Performs one or more reset write pointer op-
- erations (see page 130)
 stent) pri Obtains info about persistent reservations.
persistent_reserve_in (see page 131)
| stent ‘ pro Reserves drive for a particular initiator. (see
persistent_reserve_ou page 132)
fetch pref Requests that the drive transfer data to the
pretetc cache. (see page 132)
fetchlé preflé6 Requests that the drive transfer data to the
pretete cache. (see page 133)
410 rl0 Reads blocks of memory from the disk. (see
rea page 134)

continued on next page

HGST Confidential 31

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

request_sense

Command Name Short Form Description
rl2 Reads blocks of memory from the disk. (see
readl?2
page 134)
rlé6 Reads blocks of memory from the disk. (see
readlé6
page 135)
r32 Reads blocks of memory from the disk. (see
read32
page 136)
r6 Reads blocks of memory from the disk. (see
read6
page 137)
read_buffer rdbuf agnostic function for memory test. (see page
138)
read buffer32 rdbuf32 agnostic function for memory test. (see page
139)
q " rdcap Returns info regarding the capacity of the
reac_capacity drive. (see page 140)
, rdcaplé6 Returns info regarding the capacity of the
read_capacitylé .
drive. (see page 141)
rdmapl0 Requests that the target transfer medium de-
read_defect_datall
fect data. (see page 142)
rddl12 Requests that the target transfer medium de-
read_defect_datal2
fect data. (see page 142)
rdlong ve transfers one block of data to initiator. (see
read_long
page 143)
rdlonglé6 ve transfers one block of data to intiator. (see
read_longlé6
page 144)
reassign blocks reas Reassigns specified logical blocks. (see page
145)
, , } rcvdg Sends analysis data to initiator. (see page
receive_diagnostic_results 146)
rellO Releases a previously reserved LUN. (see
releaselO
page 147)
rel6 Releases a previously reserved LUN. (see
releaseb6
page 147)
- rlun Returns the known Logical Unit Numbers to
report_-un the initiator. (see page 148)
¢ ted q repsupops | Returns a list of all opcodes and service ac-
report_supported_opcodes tions. (see page 148)
repsuptmf | Returns information on supported TMFs.
report_supported_tmf (see page 149)
None Return the zone structure of the zoned block
report_zones .
device. (see page 150)
None Return the zone structure of the zoned block
report_zones_old .
device. (see page 151)
sns Returns the target’s sense data to the initiator.

(see page 152)

continued on next page

HGST Confidential

32

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

sanitize

Command Name Short Form Description
resl0 Used to reserve a LUN for an initiator. (see
reservelO
page 153)
res6 Used to reserve a LUN for an initiator. (see
reserveb
page 153)
, , None Performs one or more reset write pointer op-
reset_write_pointer .
erations (see page 154)
)) None Performs one or more reset write pointer op-
reset_write_pointer_old .
erations (see page 155)
, rezero Requests that the target seek to LBA 0. (see
rezero_unit
page 155)
None Performs a sanitize operation. (see page 156)

security_protocol_in_block

sec_in_blk

Retrieve security protocol information from
logical unit. (see page 156)

security_protocol_in_byte

sec_in_byte

Retrieve security protocol information from
logical unit. (see page 157)

security_protocol_out_block

sec_out_blk

Send security protocol information to logical
unit. (see page 158)

security_protocol_out_byte

sec_out_byte

Send security protocol information to logical
unit. (see page 159)

K10 sk10 Requests that the drive seek to the specified
see LBA. (see page 160)
K10 641b sk10_64 Requests that the drive seek to the specified
see - a LBA. (see page 160)
K6 sk6 Requests that the drive seek to the specified
see LBA. (see page 161)
.) sndd Requests the drive perform a diagnostic. (see
send_diagnostic
page 162)
start_stop_unit ssu Starts or stops unit. (see page 162)
h) h sync Ensures that logical blocks in the cache have
synchronize_cache their most recent data value recorded on the
media (see page 163)
h) helé synclé6 Ensures that logical blocks in the cache have
synchronize_cache their most recent data value recorded on the
media (see page 164)
. tstrdy Tests to see if the device is ready. (see page
test_unit_ready
164)
unmap um Invalidates user data on the disk. (see page
165)
i ver Asks drive to verify data written on me-
verify

dia. If bytechk=0, trans_ length is # of
blocks to verify internally. If bytechk=I,
trans_length is also blocks being sent to
drive, so send_length must be made the same
as trans_length. (see page 165)

continued on next page

HGST Confidential

33

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name

Short Form

Description

verifyl2

verl?2

Asks drive to verify data written on me-
dia. If bytechk=0, trans\ length is # of
blocks to verify internally. If bytechk=l1,
trans_length is also blocks being sent to
drive, so send_length must be made the same
as trans_length. (see page 166)

verifylé6

verlo6

Asks drive to verify data written on me-
dia. If bytechk=0, trans\ length is # of
blocks to verify internally. If bytechk=1,
trans_length is also blocks being sent to
drive, so send_length must be made the same
as trans_length. (see page 167)

verify32

ver32

Asks drive to verify data written on me-
dia. If bytechk=0, trans\ length is # of
blocks to verify internally. If bytechk=1,
trans_length is also blocks being sent to
drive, so send_length must be made the same
as trans_length. (see page 168)

vu_commit_verify

None

Upon receipt of commit verify command,
drive updates verify pointer (see page 169)

vu_define_band_type

None

fine Band Type (see page 170)

vu_query_band_information

None

Returns information associated with bands
(see page 170)

vu_query_last_verify_error

None

Verify from last verified lba of the band
through appropriate EOT (see page 171)

vu_reset_write_pointer

None

Reset write pointer for the designated band
(see page 172)

vu_set_write_pointer

None

Move the write pointer position to start of
track of given logical block address (see page
172)

vu_verify_squeezed_blocks

None

Verify from last verified lba of the band
through appropriate EOT (see page 173)

writelO

wlO

Writes blocks of memory to the disk. (see
page 174)

writel?2

wl2

Writes blocks of memory to the disk. (see
page 175)

writelo6

wl6

Reads blocks of memory from the disk. (see
page 175)

write32

w32

Writes blocks of memory to the disk. (see
page 176)

writeb6

wb6

Writes blocks of memory to the disk. (see
page 177)

write_and_verify

wrv

Requests the drive write data and then check
it. (see page 178)

continued on next page

HGST Confidential

34

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

write_same32

Command Name Short Form Description
)) wrvl?2 Requests the drive write data and then check
write_and_verifyl?2 .
it. (see page 179)
. . wrvle Requests the drive write data and then check
write_and_verifylé6 .
it. (see page 179)
)) wrv32 Requests the drive write data and then check
write_and_verify32 .
it. (see page 180)
) writebuf Used with read\ buffer to test drive’s mem-
write_buffer
ory. (see page 181)
) writebuf32 | Used with read_buffer to test drive’s mem-
write_buffer32
ory. (see page 182)
te 1 wrlong Requests that the drive write one block of
write_tong data. (see page 183)
) wrlonglé Requests that the drive write one block of
write_longl6
data. (see page 184)
" WIrs Writes one block of data to a number of logi-
write_same cal blocks. (see page 185)
e 16 wrslé Writes one block of data to a number of logi-
wrike_same cal blocks. (see page 186)
wrs32 Requests the drive write data and then check

it. (see page 187)

3.4 Commands Specific To The CIL

In this section we will explore the different TCL commands that are specific to the CIL. The commands are
arranged hierarchically, meaning there are a few base commands that have many options. The basic structure of a

CIL command (non CDB) is:

<category noun> <action verb>

[<subject noun>] ?options?

For example: buff £ill zero 0 512 fills a buffer with zeros while buff dump 0 dumps the con-
tents of buffer #0 to the screen. Below we give a table the commands and a brief description of each. In the
sections that follow, we look at each command in more detail. Commands in type are accepted commands.
Commands in ifalics are not full commands and will prompt you with additional options when entered as-is:

Command Name Short Form | Description
None Retrieves the info on the ata device (see
ata get
page 189)
LUff adl hk None Compute checksum of buffer data using
b acrerchrsum Adler32 algorithm with base (see page 189)
None Computes 32-bit checksum of buffer data
buff checksum
(see page 189)
buff None Compares contents of two buffers. Returns
b compare 0 on match, -1 or 1 (see page 190)
None Copies data from one buffer to another (see
buff copy
page 190)

continued on next page

HGST Confidential

35

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name Short Form | Description
None Computes 32-bit CRC of buffer data (see
buff crc
page 191)
buff diff None Diffs contents of two buffers. Returns 0 on
v * match, -1 or 1 (see page 191)
bd Dumps contents of a buffer in hex (see page
buff dump
192)
DUEE e2 None Calculates End-To-End protection guard
v eee from buffer data. (see page 193)
, bfb Fill a portion of a buffer with a byte value
buff fill byte
(see page 194)
. bff Fill buffer with a 4 byte float or 8 byte dou-
buff fill float ..
ble precision float (see page 194)
) , bfi Fill 4 buffer bytes with an int value (see
buff fill int
page 195)
.) None Fill 8 buffer bytes with an int value (see
buff fill int64
page 195)
buff fill one bfo Write Oxff bytes to a buffer (see page 195)
buff £i11 patt bfp Fill a buffer with a pattern of bytes (see
page 196)
. bfr Write random bytes to a buffer (see page
buff f£fill rand 196)
, bfs Write a sequence of bytes to a buffer (see
buff fill seqg
page 196)
. bfsh Fill 2 buffer bytes with an 16-bit ’short’
buff fill short
value (see page 197)
) , bfstr Write a string to a buffer (see page 197)
buff fill string
. bfz Write zeros to a buffer (see page 197)
buff fill zero
buff find None Searches for occurances of a data pattern in
b n a buffer (see page 198)
bUff Findst None Searches for occurances of a string in a
v tnastr buffer (see page 198)
Luff £ N bf Extracts formatted information from a
b orma buffer (see page 199)
buff get address None lfge;)nns the address of the buffer. (see page
None Gets the current buffer count (see page 200)
buff get count
, None Gets the default buffer initial size (see page
buff get dsize
200)
) None Gets the current receive buffer index (see
buff get ri
page 200)
, None Gets the current send buffer index (see page
buff get si
200)
buff £ s None Returns the amount of space that is allo-
b get size cated to a specified buffer (see page 200)

continued on next page

HGST Confidential

36

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

device

get callback rescan

Command Name Short Form | Description
buff gets None Extract string(s) from a buffer (see page
201)
None Fills a buffer with the contents of a file (see
buff load
page 201)
None Get a byte from the buffer (see page 202)
buff peek
None Put a single byte into the buffer (see page
buff poke
202)
o it 1 None Prints Sgl of the specified buffer index (see
u print sg page 202)
None Clears All Buffers (see page 203)
buff reset
buff rsa keygen None Create an RSA public/private key pair (see
page 203)
buff , None Create an RSA signature using the provided
“ tsa sign message data and private (see page 203)
. f None Verify an RSA signature using the provided
v tsa verity message data, public key (see page 204)
None Saves buffer contents into a file (see page
buff save
204)
None Changes the number of available buffers
buff set count
(see page 205)
, None Sets the minimum buffer allocation size
buff set dsize
(see page 205)
, None Sets an SGL (see page 205)
buff set pgi_sgl
) bri Sets the current receive buffer index (see
buff set ri
page 206)
LUff set si bsi Sets the current send buffer index (see page
206)
, None Allows the user to set the size of a specified
buff set size .
buffer in memory (see page 206)
| None Set whether the Niagara Console and Com-
consoie_syne mand Window are (see page 207)
, None Returns number of devices (see page 207)
device count
) None Manually adds a device to the device list
device create
(see page 207)
. None Returns the allow_set_when_locked flag of
device get allow_set_when_locked .
the current device (see page 208)
devi c 11back ¢ None Returns the callback mapped to the speci-
evice get ca ack create fied device command, if any (see page 208)
devi ‘ 11back lock None Returns the callback mapped to the speci-
eviee get ca ac oc fied device command, if any (see page 208)
devi ‘ 11back None Returns the callback mapped to the speci-
evice get ca ack remove fied device command, if any (see page 208)
None Returns the callback mapped to the speci-

fied device command, if any (see page 208)

continued on next page

HGST Confidential

37

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name Short Form | Description
devi ‘ 11back t ind None Returns the callback mapped to the speci-
evice get ca ack set index fied device command, if any (see page 209)
devi c 11back Lock None Returns the callback mapped to the speci-
evice get ca ack untoc fied device command, if any (see page 209)
) , None Returns the index of the current device (see
device get index
page 209)
)) None Returns the current interface type of the de-
device get interface ..
vice, if known (see page 209)
) None Returns the last command to be executed
device get last_cmd
(see page 210)
devi £ last d ti None Returns the command execution time for
evice ge ast_cma_time the last cmd (see page 210)
) None Returns the current state of read xfers (see
device get read_xfer
page 210)
devi ‘) ‘ None Returns the actual number of data bytes re-
eviee get receive_coun turned by the device (see page 210)
. None Get the reserve status of the device at index
device get reserved
(see page 210)
devi c q c None Returns the actual number of data bytes sent
evice get sehc_coun by the device (see page 211)
)) None Returns the timeout of the current device, in
device get timeout o
milliseconds (see page 211)
) None Returns the current transfer mode for the
device get xfer_mode .
current driver. (see page 211)
) None Resets the HBA driver and rescans the bus
device hbareset
(see page 211)
i , None Returns various information about a device
device info
(see page 211)
))) None Returns the block size for a device (see page
device info blocksize 212)
.) None Returns the channel id for a device (see
device info channel
page 212)
, , None Returns the code level for a device (see page
device info codelevel 213)
)) None Returns the host id for a device (see page
device info host
213)
)) None Returns the lun id for a device (see page
device info lun
213)
) , , None Returns the marker size for a device (see
device info markersize
page 214)
i , None Returns the maximum LBA for a device
device info maxlba
(see page 214)
)))) None Returns whether the device has inline meta-
device info mdata_inline
data (see page 214)
continued on next page
HGST Confidential 38

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

device

set callback create

Command Name Short Form | Description
) , , None Returns the metadata size of a device (see
device info mdata_size
page 215)
)) . None Returns the physical block size for a device
device info phy_blocksize
(see page 215)
) , , None Returns the product id for a device (see
device info productid
page 215)
))) None Returns true if protection enabled for a de-
device info protection .
vice (see page 216)
)))) None Returns the protection location of a device
device info protection_location
(see page 216)
, , , None Returns the protection type for a device (see
device info protection_type
page 216)
, , None Returns the protocol of a device (see page
device info protocol 217)
)) None Returns true if rto enabled for a device (see
device info rto
page 217)
.) . None Returns the serial id for a device (see page
device info serial
217)
i ,) , . None Returns the ASIC version of a device con-
device info serial_asic_version .
nected over serial (see page 218)
, , None Returns the target id for a device (see page
device info target 218)
)) None Returns the vendor id for a device (see page
device info vendor
218)
, , , None Returns the wwid for a device (see page
device info wwid
219)
)) None Returns 1 if a device is locked, O otherwise
device islocked
(see page 219)
)) None Returns a summary list of connected de-
device list .
vices (see page 219)
devi lock None Locks A Device (Prevents Commands
evice Loc From Being Sent) (see page 220)
)) None Locks a device based on the device serial
device lock serial
number (see page 220)
) None Removes a device from the device list (see
device remove
page 220)
) None Rescans the SCSI bus or FCAL loop (see
device rescan
page 221)
) None Allow or disallow a device to be set when
device set allow_set_when_locked .
its locked (see page 221)
,) None Manually overides the blocksize for a de-
device set blocksize .
vice (see page 221)
None Sets a callback for a command (see page

222)

continued on next page

HGST Confidential

39

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

fcal abts

Command Name Short Form | Description
, None Sets a callback for a command (see page
device set callback lock 222)
, None Sets a callback for a command (see page
device set callback remove 222)
, None Sets a callback for a command (see page
device set callback rescan 223)
)) None Sets a callback for a command (see page
device set callback set index 223)
, None Sets a callback for a command (see page
device set callback unlock 223)
, , dsi Sets the current device (see page 224)
device set index
devi ‘ K , None Manually overides the HA Marker Size
evice seb marfersize (MRKSZ) for a device (see page 224)
, None Manually overides the maxlba for a device
device set maxlba
(see page 224)
devi t ohv blocksi None Manually overides the physical blocksize
evice set phy brocksize for a device (see page 225)
device set protocol None lz\/ézg;ually overides the protocol (see page
, None Used to turn off data transfers to buffer to
device set read_xfer .
improve performance (see page 225)
: None Set the reserve/release status of the device
device set reserved .
at index (see page 226)
)) None Change the serial number of a drive (see
device set serial
page 226)
)) None Sets the timeout value for the current device
device set timeout
(see page 226)
) None Sets the transfer mode for the current driver
device set xfer_mode
(see page 227)
i None Unlocks A Device (see page 227)
device unlock
i . None Unlocks a device based on the drive serial
device unlock serial
number (see page 228)

N E ts a TCL fil 228
encode one ncrypts a e (see page)
eparse None Parses an encrypted UIL specfile, adding

command definitions (see page 228)

None Converts an ec error code to a string (see

err_str
page 229)

esource None A modified version of source that can exe-
cute .stc files (see page 229)

None Sends an abort_task_set frame to the device
fcal abort_task_set

(see page 229)
None Sends an abort sequence frame to the device

(see page 229)

continued on next page

HGST Confidential

40

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page ‘

Command Name Short Form | Description
None Clears autocontingent allegiance condition
fcal clear_aca
(see page 230)
None Sends an clear_task_set frame to the device
fcal clear_task_set
(see page 230)
foal 11 ‘ None Sends a LIP followed by a port and process
ca ib_rese login to all devices (see page 230)
feal £ logi None Sends an PORT_LOGIN frame to the de-
cat port_togin vice (see page 230)
feal Logi None Sends an process_login frame to the device
cal process_login (see page 230)
None Sends areset followed by a port and process
fcal reset . .
login to all devices (see page 231)
feal t c ¢ None Clears command queue for all initiators and
ca arget_rese returns Unit Attention (see page 231)
None Terminates task (see page 231)
fcal term_task
None Turn NVMe Async CQEs on and off (see
feedback asynccge
page 231)
None Turns embedded color codes on and off (see
feedback color
page 231)
None Sets feedback to the default level (see page
feedback default 232)
None Changes number of buffer bytes returned by
feedback maxlen
a command (see page 232)
) None Sets feedback to the minimum level (see
feedback min
page 232)
feedback None Pop feedback state off the feedback stack
eeaback pop (see page 233)
feedback h None Pushes feedback state onto the feedback
eedback pus stack (see page 233)
) None Turn ATA return FIS verbose on and off
feedback showatafis
(see page 233)
None Turn CDB/ATA command verbose on and
feedback showcdb
off (see page 233)
None Turn NVMe CQ Entry verbose on and off
feedback showcge
(see page 234)
)) None Get all CIL commands. (see page 234)
get_cil_list
- ‘ None Returns error string for a specified keq. (see
getsted_str page 234)
init None No Description Given (see page 234)
, 1 ‘ None Log a message to the Niagara log file (see
niagara_log_puts page 235)
nvme dump_cq None Dumps a completion queue (see page 235)
D leti 2
nvme dump_sq None umps a completion queue (see page 235)
‘ 11back ‘ None Returns the callback mapped to the speci-
nvime get ca ack rese fied device command, if any (see page 236)

h—IGST Confidential continued on next page h 1

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name Short Form | Description
) None Returns a list of completion queues (see
nvme get cqg_ids page 236)
nvme get last_cid None Returns the last CID (see page 236)
None Returns the last completion queue entry’s
nvme get last_dword dword (see page 236)
None Returns the last completion queue entry’s
nvme get last_dword0 dword0 (see page 236)
None Returns the last completion queue entry’s
nvme get last_dwordl dword1 (see page 237)
None Returns the last error log page (see page
nvme get last_err_logpage 237)
None Returns the status fields of the last comple-
nvme get last_status .
tion queue entry (see page 237)
nvme get page._size None Returns the page size. (see page 237)
, None Reads an NVMe register (see page 237)
nvme get register
} None Returns a list of submission queues (see
nvme get sqg_ids page 238)
None Performs NVMe resets (see page 238)
nvme reset
None Sets a callback for a command (see page
nvme set callback reset
238)
nvme set page_size None Set the page size (see page 239)
) None Writes an NVMe register (see page 239)
nvme set register
parse None Parses a UIL specfile, adding command
definition (see page 239)
pcie get config None Reads PCle config space (see page 240)
pcie set config None Writes PCle config space (see page 240)
, None Gives time with high-resolution timer nor-
perfent clicks malized to us. (see page 240)
None Gives system clock ticks with high-
perfent count resolution timer. (see page 241)
None Delays the system a given amount of mi-
perfent delay croseconds. (see page 241)
None Gives the system’s resolution in ticks per
perfent freq second. (see page 241)
pai dump_iq None Dumps a inbound queue (see page 241)
bai dump_oq None Dumps an outbound queue (see page 242)
bai get register None Reads a PQI Register (see page 242)
pqi set register None Writes a PQI register (see page 242)
) None Returns 1 if auto tag increment is enabled,
qetl get auto_iner 0 otherwise. (see page 243)
) None Returns the current ignore_queue_full sta-
gctl get ignore_gueue_full e A A
"""" I B .. WS LU PAEC Z25T) |
HGST Lonfidential None Returns current setting for the maximum {2

gctl

get max_depth

queue depth. (see page 243)

continued on next page

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name Short Form | Description
01 ‘ q None Returns the number of commands that have
N get num_dqueue been issued, but haven’t (see page 243)
£1 ‘ b None Returns the number of queued commands
e get num_waiting that have returned status. (see page 244)
1 - ‘ None Returns current tag type. Types include
E ge ag_type simple, ordered and head. (see page 244)
)) None Returns status information for the specified
gctl idx_info .
queue index. (see page 244)
£1 None Waits for and retrieves the next available
ac reev command from the device. (see page 244)
£1 11 None Waits for and retrieves all outstanding com-
e recv a mands from the device. (see page 245)
1 c None Waits for and retrieves commands from the
ac recv tag current device until the (see page 245)
01 q None Sends internal table of commands built up
e sen in stacked queuing mode (see page 245)
. None Turns the auto increment of tag ids on/off.
gctl set auto_incr
(see page 246)
, None Sets queue full on or off (see page 246)
gctl set ignore_queue_full
1 ‘ deoth None Sets the maximum queuing depth. (see
gc set max_dep page 246)
- ‘ - None Sets the tag id of the next command to be
ac set next_tag sent. (see page 247)
gotl set tag type None Sets tag type of next command. (see page
247)
, None Returns status information for all received
gctl table_info
commands. (see page 247)
- inf None Returns status information for the specified
e ag_tnto queue tag. (see page 248)
None Puts current UIL in concurrent queuing
gmode concurrent
mode (see page 248)
) None Puts current UIL in non-queued mode (see
gmode disable
page 248)
) None Returns Niagara’s current queuing mode
gmode info
(see page 248)
q , None Puts current UIL in pcie queuing mode (see
gmode pcie page 249)
None Puts current UIL in stacked queuing mode
gmode stacked
(see page 249)
None Generates a random unsigned float (see
rand
page 249)
) None Adds a histogram constraint to a random
rand addhist
number generator (see page 250)
continued on next page
HGST Confidential 43

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name Short Form | Description
None Closes a random source (see page 250)
rand close
None Generates a random unsigned float (see
rand float
page 251)
d £ None Generates a random floating point between
ran range two floating points (see page 251)
) None Generates a random unsigned integer (see
rand int
page 251)
None Creates a new random source (see page
rand open
252)
d None Generates a random unsigned integer be-
rand range tween two integers (see page 252)
None Seeds a random channel (see page 253)
rand seed
, None Displays histogram settings for a random
rand showhist
channel (see page 253)
alb None Returns a number between zero and maxlba
ran a - blksize (see page 254)
None Sends an abort_task_set frame to the device
sas abort_task_set
(see page 254)
None Clears autocontingent allegiance condition
sas clear_aca
(see page 254)
None Sends an clear_task_set frame to the device
sas clear_task_set
(see page 254)
None Gets the sas pod address (see page 255)
sas get_pod_address
None Gets the sas device address (see page 255)
sas get_sas_address
‘ q None Returns the current speed of the SAS bus
sas get_spee (see page 255)
, None Sends the notify SAS primitive to allow unit
sas link_reset
start (see page 255)
None Logical Unit Reset (see page 255)
sas lun_reset
None Performs a SAS I-T Nexus reset sequence
sas nexus_reset
(see page 255)
Lif None Send NOTIFY Primitive to allow auto unit
sas notity start (see page 256)
, None Sends a SAS EPOW Notify (see page 256)
sas notify_epow
n ‘ None Performs a SAS phy reset sequence (see
sas phy_rese page 256)
sas power_manage None Sets the SAS Power Management for the
current device (see page 256)
S48 Guerv asvic event None Sends a Query Asynchronous Event TMF
d y—asyne— (see page 256)
None Sends a Query Task Set TMF (see page
sas query_task_set
257)
None This performs a SAS hard reset sequence
sas reset

(see page 257)

[

: g 4
contmuca oI NTXt page

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name Short Form | Description
None Sets the SAS Address for the current device
sas set_sas_address
(see page 257)
sas set_speed None Sets the interface speed (see page 257)
sata comreset None Issues a COM reset (see page 258)
None Retrieves the info on the sata device (see
sata get
page 258)
) None No Description Given (see page 258)
sata get active
sata get control None No Description Given (see page 259)
sata get error None No Description Given (see page 259)
sata get status None No Description Given (see page 259)
sata get_auto_tags None Gets the state of automatic tags (see page
259)
None Gets the state of automatic tags (see page
sata get_clear_ncg_err
259)
sata get_speed None Gets the speed of Drive (see page 259)
None This command is used to changed the inter-
sata pm
face sleep state (see page 260)
‘ , None This Command is used to change the hba’s
sata pm aggressive aggressive sleep state (see page 260)
None Reads the port registers for the current de-
sata read_port_regs .
vice (see page 260)
sata set_auto_tags None Sets the state of automatic tags (see page
260)
None Sets the state of automatic ncq error clear-
sata set_clear_ncqg_err .
ing (see page 261)
None sets the speed of Drive (see page 261)
sata set_speed
None Sends a soft reset to the device (see page
sata soft_reset
261)
cata srst None Sends a soft reset to the device (see page
261)
) None Sends an abort message to the device (see
scsi abort
page 262)
, None Sends an abort tag message to the device
scsi abort_tag
(see page 262)
, None Clears the current queue. (see page 262)
scsi clear_dgqueue
) , None Sends a SCSI device reset message to the
scsil device_reset
current target (see page 262)
. None Changes the identify message the initiator
scsi id_mode
uses (see page 262)
, q None Changes when PPR negotiations will occur
scsi ppr_mode (see page 263)
, q None Sets the desired Parallel Protocol Request
Scsi ppr_mode_patms (PPR) parameters (see page 263)
h—IGST Confidential continued on next page J45

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

Command Name Short Form | Description
, None Preforms a SCSI bus reset (see page 263)
scsi reset
) None Changes when synchronous negotiations
scsi sync_mode K
will occur. (see page 264)
) q None Sets the desired synchronous period and
SCS1 sync_fmode_parms offset. (see page 264)
.. None Changes when width negotiations will oc-
scsi wide_mode
cur. (see page 264)
) g q None Sets the desired data width for use in all
SCS1 wice_frode_parms subsequent wide (see page 265)
£ cdb iu t None Gets the default IU wrapper for CDBs (see
sop get cdb_iu_type page 265)
t odb iu t None Sets the default IU wrapper for CDBs (see
sop set cdb_iu_type page 265)
c t cdb £ al None Gets whether the transport_cdb flag is al-
ransport_c get always_on ways on. (see page 265)
‘ ¢ cdb A ‘ ‘ None Gets whether descriptor format is enabled
ransport_c g€ ese_torma for transport cmds. (see page 266)
None Gets the transport_cdb padding boundary.
transport_cdb get pad_boundary (see page 266)
c t cdb c ads None Gets whether the transport_cdb padding
ransport_c get pacding flag is enabled. (see page 266)
‘ ¢ cdb ‘ ‘ i None Gets the transport_cdb APT protocol. (see
ransport_c get protoco page 266)
‘ £ cdb £ al None Sets whether the transport_cdb flag is al-
ransport_c set atways_on ways enabled. (see page 266)
None Enable descriptor format when issuing the
transport_cdb set desc_format .
sns option of a transport (see page 267)

c ¢ cdb ¢ 4 b a None Sets padding boundary for commands that
ransport_c seL pad_poundary use the transport_cdb flag. (see page 267)
‘ ¢ cdb ‘ 4di None Enables padding of ATA/APT DMA cmds
ransport_c set padding that use the transport_cdb (see page 267)

None Sets the transport_cdb APT protocol. (see
transport_cdb set protocol
page 268)
, None Returns the number of available UIL drivers
uil count
(see page 268)
, None Creates (and initializes) a new UIL driver
uil create
(see page 268)
. None Returns 1 if autosense is active, 0 otherwise
uil get autosense
(see page 268)
, , None Returns the driver’s internal data buffer size
uil get buffsize
(see page 269)
, None Returns the callback mapped to the speci-
uil get callback create

fied uil command, if any (see page 269)

continued on next page

HGST Confidential

46

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

continued from previous page

uil set timeout

Command Name Short Form | Description
1 ‘ 11back None Returns the callback mapped to the speci-
vt get ca ack remove fied uil command, if any (see page 269)
i1 ‘ 11back t ind None Returns the callback mapped to the speci-
urL get ca act set index fied uil command, if any (see page 269)
, , None Returns err info specific to the UIL driver
uil get err_info
(see page 269)
.) None Returns the filter flag of the current driver
uil get filter
(see page 270)
.) None Gets the index of the current UIL driver (see
uil get index
page 270)
, None Gets the driver’s max transfer length (see
uil get max_xfer_len
page 270)
, None Gets interface speed (see page 270)
uil get speed
, , None Gets the default timeout value for this uil
uil get timeout .
driver (see page 270)
.) None Gets interface version (see page 271)
uil get wversion
.) None Returns a brief description about the current
uil info e
uil driver (see page 271)
Uil list None Returns a list of active uil drivers (see page
271)
, None Loads and initializes a UIL/TCL extension
uil load
(see page 271)
, None Sends a string message to a UIL and expects
uil message .
a string reply (see page 272)
. None Returns the name of the current uil driver
uil name
(see page 272)
, None Removes (and uninitializes) a UIL driver
uil remove
(see page 272)
. None Activate / Deactivate Sense For The Current
uil set autosense .
Driver (see page 273)
, None Sets a callback for a command (see page
uil set callback create 273)
uil set callback remove None 33‘[35) a callback for a command (see page
, , None Sets a callback for a command (see page
uil set callback set index 274)
.) usi Sets the current UIL driver (see page 274)
uil set index
, None Sets the logging level for the current UIL
uil set loglevel .
driver (see page 274)
uil set speed None Sets interface speed (see page 275)
None Sets the timeout value for the all devices

(see page 275)

HGST Confidential

47

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

3.4.1 The device command

The device command offers two basic features:
e Manage multiple devices
e Obtain Basic Information About A Device (Or Devices)

Device Information

There are 2 ways to get device information, device info, and device 1list. Typing device info
returns a detailed list about the currently connected device. Here is an example:

> device info

Information For Device #0

VendorID: HP CD-Writer+ 8290 1.3C
Serial#:

CodeLevel:

HostID: 0

SCSIChannel: 0

DevicelD: 0

LUN: 0

BlockSize: 2048

MaxLBA: 296398

You also have the option of looking at these parameters individually. For example:

> device info blocksize
2048

This can be useful in scripts. Options available are blocksize, channel, codelevel, host, lun,
maxlba, serial, target, and vendor.

The device 1list command lists all of the connected devices and provides some information about each
one. Here is an example:

> device list

Indx| Vendor Info
____+ ________________________________

| hst chn id lun Max LBA Blk Size
+

0 | HP CD-Writer+ 8290 1.3C | 0 0 0 0 296398 2048
|
+

1 | SanDisk ImageMate II 1.30 1 0 0 0 15680 512

Changing The Target Device

The device count command returns the number of devices as an integer. The final two commands having
to do with devices are device get index and device set index. These commands are used to deter-
mine and set the current device. All cdb commands (such as inq) are directed at the current device. Here is an
example that sets to device #1 (the Sandisk ImageMate in the list given in the last section):

device set index 1

SHORTCUT: The format given above is descriptive but a pain to type. Because of this, you can also use the
shortcut given below:

dsi 1

HGST Confidential 48

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

Hot swapping Devices

If your driver supports it, you can use the device rescan command to scan for “Hot” loop or bus changes.
If your current UIL driver does not support dynamic bus rescans, you will get an error message.

Note: If you are unsure if a specific uil driver supports rescans, try to rescan before changing the loop or bus.
Then if the driver supports rescans, go ahead and change the loop, re-scanning again after the change.

IMPORTANT: If you are using the sg driver in Linux, you should do a bus rescan immediately after changing
the loop. Changing the loop and exiting the CIL without re-scanning the loop can confuse the SCSI subsystem in
Linux (requiring a reboot to fix it).

Locking A Device

Sometimes a CIL testing workstation has its internal drives visible to the CIL. This is a potential disaster in
that a careless write command can corrupt data on the host computer. Because of this, the CIL allows you the
option of locking out a device. To lock a device, use the following command:

device lock 0

Where 7 0’ is the index of the device you wish to lock. Use the device 1ist command to get the index
for a particular device. Once a device is locked, the CIL will not allow you to send any CDB’s to it. For example
the following will give and error:

#lock the device
device set index 0
device lock 0

#this gives an error
ing

#unlock the device
device unlock 0

#now ingquiry works
ing

Above we used the device unlock command. This command can be used to unlock a device that has been
locked. The final command having to do with device locksis device islocked. Thedevice islocked <index>
command will return a 1 if index is locked, otherwise it will return a zero. Here is an example:

device islocked 1

IMPORTANT: If an internal device on your machine is visible to the CIL, what you should really do is lock
the drive in the CIL’s startup script (see x for details on the CIL’s startup script). This will ensure that the device
is locked by default.

3.4.2 The buff Command

Buffer Basics

Many of the CDB commands you execute involve the transfer of data to or from the device. The readl0
CDB, for example, transfers from the device to the computer while writel0 transfers data from the computer
to the device. To see if a CDB command transfers data, use the —help option:

HGST Confidential 49

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

> readlO -help

R i B I I I I S I S b I SR I b I b b 2 e

Command Name (s) :

Description:
Default Parm Order: lba, translen,
Buffer Data Sent: <None>

Buffer Data Received:

Parameters:
Name Range
—-rdprotect (0=7)
—dpo (0 or 1)
-fua (0 or 1)
-reladr (0 or 1)
-1lba (O-0XFFFFFFFF)
—-translen (0-0XFFFF)
—control_byte (0-0xFF)
-uil (0-7)
—dev (0-2)
-ri (0-2)
—-cmd_timeout (0=7)
—dummy (0-1)

readl0,r10, rdl0

rdprotect

<translen> Blocks

Default

0x0

0x0

0x0

0x1

0x0
<current>
<current>
<current>
0

0

|
+
|
|
|
|
|
|
|
|
|
|
|
|
|

Reads blocks of memory from the disk.

Description

EndToEnd RdProtect field

Disable Page Out

Force Unit Access

Relative Block Address

Logical Block Address

Transfer Length in Blocks

NACA | FLAG | LINK

Temporary UIL override

Temporary device index override
Temporary receive buffer override

Persistent timeout override (0=no
override)

Don’t actually send the command

If we look at “Buffer Data Received” above, we see that a buffer (the receive buffer) is receiving data from
the drive. Where does this data go? The data goes into a special buffer that is managed by the CIL software.
The buf f command provides access to both this buffer and the send buffer that is used with commands such as

writel0®

Let us look at the contents of a buffer. Start the CIL (start it from scratch to make sure the Buffers are in their

default condition) and type the following:

ing

You will see some data dumped to the screen. This data that you see is also stored in a buffer. To see the

buffer, enter the following:

buff dump 1

The buffer should match that returned by the ing command (except that buf £ dump 1 displays more data

than ing did).
The buff dump command’s format is:

buff dump <buffer #> ?offset? ?length?

There are actually more than 2 buffers managed by the CIL. We will cover this feature later...

HGST Confidential

50

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

The offset and length parameters are both optional and are used to get more control over what part of
the buffer you see. The default offset is zero bytes. The default length is 255 bytes. The default send buffer index
is zero. The default receive buffer index is 1. You can also say:

buff dump send
buff dump recv

This is the equivalent to:

buff dump [buff get si]
buff dump [buff get ri]

SHORTCUT: You can use the bd keyword in place of buff dump.

Although the ability to dump the hex data for a buffer is often sufficient, sometimes it is valuable to parse out
specific data of a buffer into specific numbers and strings. This is where the buff format command comes
into use. The generic syntax of the command is:

This command uses the same type of format string used by print £ in C. In case you are not familiar with
this, here is an example:

#this example parses Inquiry data
inquiry
buff format 1 "The Vendor ID Is: %s" {8 8}

This command first does an inquiry to fill the receive buffer (which we are assuming is index 1) with inquiry
data. After the buffer contains data, the buff format command is used to extract some information. Specifi-
cally, the % s tag identifies that we should substitute a string. The next field, {8 8}, specifies the offset and length
within the buffer to use for constructing the string. In addition to strings, you can also specify decimal integers
(%d and %u), hexadecimal integers ($x and %$X) and others. Look up use of the print £ C function for details.
You can also have multiple substitutions per line. Below we use the read_capacity cdb withbuff format
to print out the max Iba and block size returned by the command:

read_capacity
buff format 1 "Max LBA: %u (0x%x hex)" {0 4} {0 4}
buff format 1 "Transfer Length: %u (0x%x hex)" {4 4} {4 4}

Generating Buffer Data

In the section above we discussed some ways to examine buffer data. This is fine for ing, read10, and other
commands that transfer data from the drive. For commands that transfer data to the drive, such as writel0 and
mode_select thebuff fill command is provided. The buff £ill command can fill a buffer with many
different types of data. The first type of fill is to fill the buffer with all zeros. Here is an example:

buff £ill zero 1 0 512

This command fills buffer 1 with zeros, starting at an index of zero and continuing for 512 bytes. To see the
changes you made to a buffer, use the buff dump command:

buff fill rand 2 0 1024
buff dump 2

HGST Confidential 51

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

In this example we used the buff £ill randcommand to write 1024 random bytes to buffer 2. In the line
after this we look at the contents of what we wrote. In additiontobuff f£ill zeroandbuff f£ill rand,
there is buff fill one to fill the buffer with all 0xFF bytes. We can also fill the buffer with any other byte
using the buff fill byte command:

#format for this command is buff fill byte <index> <offset> <length> <byte>
buff f£fill byte 0 50 1000 0xCC
buff dump 0 1050

This example fills the buffer 0 with 1000 0xCC bytes, starting at an offset of 50. The buff dump command
below it shows that the first 50 bytes of the buffer were left undisturbed. We can also fill the buffer with sequential
bytes:

#here we use the default of 0 - OxFF

buff fill seq 4 0 512

#here we choose to use a range of 10 - 50
buff £ill seqg 4 0 512 10 50

The final two fill commands are useful for writing a set of bytes to the buffer. The buff fill patt
command writes a repeating pattern of bytes to the send buffer. For example to fill buffer 6 with the pattern 0x0A,
0x0B, 0x0C, 0x01, 0x02, 0x03, we would use the command:

buff f£ill patt 6 512 Oxa Oxb Oxc 1 2 3

This command can also be useful for setting a string of hex digits that repeat once, such as in setting mode
pages. For this operation, simply set the length to the same as the number of bytes you specify. Here is an example
that sets 5 bytes:

buff fill patt 0 0 5 0x00 O0x00 0x80 OxFF 0x50

Our final fill command, buff fill string, is used to write an arbitrary string to the drive. Here is the
format:

buff fill string <index> <offset> <string>
Here we write a simple message to buffer O:
buff fill string 0 0 "Hello!"

We can also send the results of a TCL command. Here is an example that fills a buffer with random data, then
encodes the first few bytes of the data with the current time and date:

buff fill rand 0 0 512
buff fill string 0 0 [clock format [clock seconds]]

Another convenient function is buff £i11l int. This function can be used to quickly fill in a buffer
parameter that is 4 bytes wide. Here is an example:

buff £ill int 0 0 S$val

Note that the bytes above are stored in “big endian” format (the same as the SCSI standard). If you want
to store in “little endian” you can use the buff f£ill byte in combination with shift and mask. Here is an
example procedure that implements little endian int fill:

HGST Confidential 52

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

proc fill _int_le {bi addr wval} {
#"little endian" format
#bfb is the short form of "buff fill byte"

bfb $bi $addr

bfb $bi [expr S$addr + 1]
bfb $bi [expr $addr + 2]
bfb $bi [expr S$addr + 3]

[expr $val & Oxff]
[expr ($val >> 8) & O0xff]
[expr ($val >> 16) & O0xff]
[expr $val >> 24]

e e e

return "4 bytes written to buffer: $bi"

You can also use the “shift and mask” trick as shown above to fill 2 and 3 byte values into the buffer.
For our final note, we can use send and recv in place of our buffer index. Here is an example:

#this command

buff fill rand send 0 512

#is the same as

buff £ill rand [buff get si] 0 512

SHORTCUT: You can use the following commands in place of their longer winded versions:

’ Command Name \Shoﬂcut‘
buff fill byte bfb
buff fill int bfi
buff fill one bfo
buff fill patt bfp
buff f£fill rand bfr
buff fill seqg bfs
buff fill string | bfstr
buff fill zero bfz

Loading And Saving Buffer Data

In addition to generating data on the fly, we also have the option of loading and saving buffers to a disk file.
The format for these two commands is:

buff load ?filename? [?index?] [?offset?]
buff save ?filename? ?index? ?offset? ?length?

The buff load commands loads a disk file into memory. The ?of fset ? variable is optional and specifies
an offset into the buffer other than the default of zero. Here is an example that loads a buffer with a file named
README . t xt and then writes the first 512 bytes of the buffer to block 100 of our current device’.

buff load README.txt send
buff dump send ;# Optional: Look at the buffer quickly
writelO 100 1

Note that the buffer data is loaded into the send buffer. We could have used a numerical index (such as 0) in
place of send above. The buff save command is performs the reverse of the buff load command. Here
is an example that gets an inquiry and saves the results to a file named ingdata.bin:

7 Assuming our device’s blocksize is 512

HGST Confidential 53

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

ing 0x0 96
buff save ingdata.bin 1 0 96

The buff save command saves the data from the current receive buffer (the default receive buffer is buffer
#1). Because the ing command puts its data in the same buffer, saving the information is straight forward.

Comparing buffers

Often it is useful to compare the contents of one buffer with that of another. In the next section we will see
how to change the send and receive buffers to allow for elaborate data compares. In this section, however, we will
stick to the tried and true setup of the send buffer being buffer 0 and the receive buffer being buffer 1. To compare
two buffers for equality, use the buf £ compare command. This command has the following syntax:

buff compare <buff index a> <buff index b> <amount>

The compare command, as described above, compares buffer a and b for amount bytes. If the buffers
compare equally, a 0 is returned, otherwise a 1 is returned. Below is an example that writes random data to a
device, then reads in the data and compares:

for {set i 0} {$1i < 50000} {incr i} {
#create random data and write it
buff fill rand 0 0 512
wl0 $i 1

#read back the data and compare
rl0 $i 1
if {[buff compare 0 1 5121} {
puts "miscompare at $i"
}
}

Using More Than Two Buffers

The CIL supports a number of buffers. There are 10 buffers by default. Additionally you can specify support
for to up to 4 billion buffers if needed (although you will run out of memory first). The CIL’s startup mode is to
point the send buffer to buffer O and the receive buffer to buffer 1. We are not limited to this setup, however. Each
of these 10 (default) buffers is actually a generic buffer. This means that each of these buffers can be a send or
receive buffer or both. When is this useful? One example is when you want to hold information from multiple
CDB commands in memory at once. A specific example would be comparing information between two drives.
Here is an example of this in action:

for {set i 0} {$i < 1000000} {incr i 100} ¢{
device set index 0
buff set ri 1
rl0 $i 100

device set index 1
buff set ri 2
rl0 $i 100

if {[buff compare 1 2 51200]} {
puts "miscompare at $i"

}

HGST Confidential 54

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

Above we see the use of the buff set ri command. This command sets the receive buffer index. By
setting it to 2 different values for each drive, we set ourselves up for a convenient buffer compare. Another useful
command is buff set si. This sets the buffer used for the send index. This command is useful for writing
data to a drive that we read with a different command. Here we modify the above script to swap the first million
blocks between two drives (note how we avoid any memory copying in this example):

for {set 1 0} {$i < 1000000} {incr i 100} {

#read data

device set index 0
buff set ri 1

rl0 $1i 100

device set index 1
buff set ri 2
rl0 $i 100

#fwrite data to opposite devices
device set index 0

buff set si 2

wl0 $i 100

device set index 1
buff set si 1
wlO $i 100

With a little creativity, you can probably come up with more useful applications for multiple buffers. In some
cases it might also be useful to copy a buffer, perhaps to store a master copy of data. The command for this is
buff copy. The command has 2 formats. The first format is straight forward:

buff copy 1 0

The command above would copy the information stored in buffer 1 to buffer 0. The original contents of buffer
0 are overwritten. The second format is more flexible:

buff copy source_index dest_index ?source_offset? ?dest_offset? ?length?
Say you wanted to copy bytes 60-100 of buffer O to bytes 200-240 of buffer 1. This would be the command:
buff copy 0 1 60 200 40

The above says: “Copy buffer O to buffer 1, start at offset 60 in buffer O, start at offset 200 in buffer 1, copy
40 bytes”.

SHORTCUT: Because you might want to change buffers often from the command line and the buffer set
command involves a lot of keystrokes two shortcuts are provided. Instead of typing buff set ri,youcantype
bri. Also, instead of typing buff set si,youcantype bsi. Here is an example:

bsi 0

HGST Confidential 55

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

3.4.3 The uil command

The CIL is built with a layered architecture. This means that when you issue a command such as readl0,
you are actually sending down a formatted block of data to a lower level driver which handles your request. Often
this will be a driver for the SCSI or FCAL devices you are testing. The software is not limited to this setup
however. Other possibilities for the “driver” include:

e A Device “Simulator” which is meant to emulate future prototype hardware

o A fake “trace” device to help you debug your scripts

A network driver to allow you to test and control drives remotely

e A driver for a different device type, such as the serial port, loop analysers, or other testing equipment

Having all of these device types available under the same commands means that your same scripts can poten-
tially work with all of these driver types. This “driver plug in” capability allows for a flexible testing environment.
The command that allows you to control this environment is uil.

The acronym uil stands for Universal Interface Layer. It is the mechanism that allows the capabilities
described above. Using the uil command you can:

e Obtain a list of loaded drivers

e Switch Between Drivers

Load A New Driver

Load a TCL Extension

Unload A Driver

First we will look at how to see what drivers are loaded. Enter the command:
uil list

This will show the names and index for each driver loaded as well as the number of devices recognized by the
driver. Note that different drivers can recognize the same device (Although they may do so to different capacities).
To find out the driver you are currently using type:

uil info

This tells you the driver that commands are currently being directed at. To change this driver, use the
uil set index command. For an example, let us assume that we have a driver named test (which we
probably do) and that it’s index is 1. Type the following:

uil set index 1
ing

Because we set ourselves to use the test driver, the inquiry was never performed on an actual device. Use
uil set index O to return to the default driver.

SHORTCUT: The uil set index command, although descriptive, can be a nuisance to type. Because
of this, you can also use the us1i shortcut for the same effect. For example:

usi 1

Other useful uil commands are beyond the scope of this manual. Here is a brief description of what they are:

HGST Confidential 56

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

e uil create: This command loads a new driver into memory and initializes it. This is also generally
done by the startup scripts although experienced users can also use the command to load drivers as they are
needed.

e uil remove: This command removes a driver added by buff create.

e uil load: This command is used to add C extensions to the CIL interface. These extension are generally
in the form of high performance TCL commands.

e uil count: This command simply returns the number of drivers currently loaded.

3.4.4 The feedback command

When you type a command such as inquiry you generally see a hex dump of what the command returned.
You also see the CDB that was sent to the drive and whether the command was successful. Normally this amount
of information is sufficient. Sometimes, however, you will want to customize the feedback returned to you. This
is accomplished through the feedback commands.

One good reason for using the feedback command is to improve the performance of your TCL scripts.
When you perform an inquiry or a read, the hex dump returned to you takes a bit of time to create. Not requiring
the computer to generate this hex dump can improve performance. The command to take feedback to a minimum
level is:

feedback min

This will set the feedback to the minimum amount. Basically, after executing a feedback min command,
commands such as read10 will only indicate if they were successful. You can still see the buffer contents using
the buf £ dump command, but these contents will no longer be printed automatically. To return the feedback to
default type:

feedback default
This will return the level of feedback to its default setting. Another feedback command is:
feedback maxlen

This command sets the maximum number of buffer bytes that are printed. When a command returns data the
command will either dump out the number of bytes returned or maxlen, whichever is smaller. Here are some
examples to clarify:

feedback maxlen 10
ing 0 96 ;# prints 10 bytes, because that is the value of maxlen
ing 0 150 ;# prints 10 bytes, because that is the value of maxlen

feedback maxlen 100
ing 0 96 ;# prints 96 bytes, because that is all ing returns here
ing 0 150 ;# prints 100 bytes, because that is the value of maxlen

feedback maxlen 1000
ing 0 96 ;# prints 96 bytes, because that is all ing returns here
ing 0 150 ;# prints 150 bytes, because that is all ing returns here

The default value for maxlen is 255. Another parameter you can customize is the display of the CDB that
was sent. There are two options for this:

HGST Confidential 57

CHAPTER 3. BASIC USE OF THE COMMAND LINE INTERFACE

feedback showcdb 1 ;# show the CDB
feedback showcdb 0 ;# don’t show it

Another command is feedback color. If you are using a terminal that accepts color codes, feedback color 1
will color the text differently for you, depending on what type of message it is (success messages are green, the
CDB is shown in purple, etc.). If you are not using a terminal that supports color codes, feedback color 1
will print what looks like garbage around your messages. If this is happening, turn off “color” with feedback color 0.
Often times when running a script it is useful to call feedback min to speed up the execution of the script.
The problem is that calling feedback default when the script is over might not restore the feedback in a
way that the user wants. Perhaps the user prefers feedback set up in a custom way... This problem is handled by
the feedback push and feedback pop commands. The feedback push command saves the current
feedback settings on a “feedback stack”. The feedback pop command can then be used to retrieve those
values. Here is an example of how a script should use these commands to restore user settings:

proc seq_reads {} {

feedback push ;# save settings
feedback min ;# boost performance

for {set 1 0} {$i < 50000} {incr i} {
rl0 $i 1

feedback pop ;# restore original settings

}
3.4.5 The randlba Command

The randlba command exists for convenience and speed. The command format is simple:
randlba ?maxblk? ?channel?

This command returns a random number between zero and the maximum l1ba available on the device. The
maxblk is optional (and has a default value of 1). The purpose of the maxb1k argument is for when you want to
read multiple blocks. Setting maxblk to a value greater than one assures that randlba will not return a value
that causes the disk to read outside of the disk. The basic formula for randlba is:

random(maxlba — maxblk)

Here is an example script that does random reads:

for {set i 0} {$i < 50000} {incr i} { rl0 [randlbal] }

HGST Confidential 58

Chapter 4
Using The Serial Extension

4.1 Introduction

The serial extension provides a means for the CIL to communicate with a drive via the serial interface. This
extension is meant to integrate Serial Debugger functionality into the CIL both for the sake of convenience and
the ability to write scripts that make use of the serial interface and the drives standard interface (SCSI, FCAL, and
SATA) together. Another advantage of the merger is that many added functions and bug fixes can benefit both the
serial and standard interface. The TCL scripting language and true buffers also make it possible to create more
powerful serial scripts.

The serial/serial3 drivers provide a means for the serial extension to communicate with the drive itself. The
serial driver supports the UART?2 protocol where the serial 3 driver supports the UART3 protocol. These drivers
handle all of the behind-the-scene serial protocols. The two protocols are not compatible with each other.

4.1.1 Basic Architecture

The serial extension is based on a 2 level architecture. The lowest level is written in C++ as a CIL driver. This
provides the advantage of having all of the CIL features provided for free and letting it deal with the protocol.
The other layer is the TCL interface layer. The result is more powerful command line and scripting functionality.
This gives users the ability to write scripts which are supported in both Windows and Linux.

4.1.2 Integratability

Another big advantage of the CIL’s serial extension is that one can write scripts that take advantage of the
serial extension and the drives more traditional interface (SCSI or FCAL) in the same script. This allows for more
creative use of the serial interface in debugging applications.

4.1.3 Buffers

The Serial Debugger has no real concept of buffers. One capability that is provided was the ability to create a
“virtual drive” from a “dump file”. This file could then be acted on with regular serial debugger commands.

Because it is a part of the CIL, the serial extension has extensive support for buffers. As with other CIL
commands, reading from the serial port automatically stores its results in the receive buffer. Writing to the serial
port also comes from the send buffer, although there is an option for filling data within the swrite command
(for convenience).

This support for buffers also introduces the other following changes:

e “Save to file” is no longer provided by the serial read function (sread). This functionality is provided by
buff save.

e “Write from file” is also no longer provided by swrite. The buff load command is used instead.

e There is no longer a concept of a “virtual device”. Equivalent functionality is provided by the buf £ dump
command. Simply load the dump file into a buffer using the provided utility and use buf £ dump instead
of sread. The reasoning behind this change is that it makes the function of sread and swrite less
ambiguous (they ALWAYS read from the serial port now).

4.1.4 Numbers and Variables

In order to be consistent with the rest of TCL and the CIL, sread and swrite inputs are always assumed
to be in decimal form, unless they are preceded by “0x”.

HGST Confidential 59

CHAPTER 4. USING THE SERIAL EXTENSION

4.1.5 CIL support

Because the serial driver is a part of the CIL, users benefit with support for all CIL features. These in-
clude buffers, device selection, feedback indicators, and sending CDBs all work as expected. This means that
device 1list will work when the serial/serial3 UIL is selected. Another added feature is that the serial driver
performs a “device scan” on start-up so it will recognize your drives, regardless of which serial port you have
them plugged into.

One important thing to understand is that, because a person using the serial extension will probably want to
use it with the drives traditional interface (SCSI, ATA, or FCAL) without having to switch UILs every time, the
serial specific commands (such as sread) point to a UIL independently from the other CIL commands. What
this boils down to is that you do not have to switch to the serial UIL for the secho, sread, swrite, etc.
commands but you will need to for any other CIL commands that depend on the UIL being used (such as the
device commands). You can also point the serial specific commands to other UILs using the suil command.

4.2 Connecting Niagara to a drive

In this section, we will show examples on how to connect Niagara to the drive using a serial debugger. To
connect Niagara to the drive one can either use serial: : connect which will put the drive in UART2 mode
or serial3::connect speed which will put the drive in UART3 mode. See Code & UART Speed table on
page ?? for valid values of speed. The serial3: :connect speedcommand will also automatically set the
Serial3 drivers speed based off of the given speed parameter.

4.3 Commands

In this section, we will look at the basic commands provided by the serial extension. These commands are
supported in both UART2 and UART3. More on the differences later.

secho

This command simply asks the device to return it’s vendor id and serial number. This command is used to
confirm a connection with the drive.

swrite <address> <length> [-dw|-dd] [data...]

This command writes information from the send buffer to the drive. As a convenient shortcut, data can be
specified in the command line. This data is then written to the send buffer before the command sends the send
buffer to the drive. The —dw and —dd options specify the format that the command line data is in. These options
only make sense to use when data is entered as part of the command. The data itself must be separated by spaces
and must start with “Ox” whenever hex data is used.

sread <address> <length> [-dw]|-dd]

This command is used for reading memory in the drive. Note that, because this is a TCL command, you must
precede all hex addresses with “Ox”. The —dw option displays the buffer content in 16-bit word (little endian)
format. The —dd option displays the buffer contents in 32-bit (little endian) format. Note that the —~dw and -dd
options have no effect on how the contents are stored in the buffer. The buffer is always stored in byte format. The
—dw and —dd options can also be used with the buff dump commands to view the buffer in the same format as
returned by sread.

sreadsp
This command takes no arguments and returns the current value of the drive’s stack pointer.

suart_level

HGST Confidential 60

CHAPTER 4. USING THE SERIAL EXTENSION

This command returns the current UART version of the device over serial. This is done by sending a sync
packet in UART?2 and if that doesn’t respond within a few milliseconds it will try it over UART3. If UART3 also
times out then no devices are attached.

suart2
This command sets the serial communication link (using UART3 protocol) to the UART?2 protocol.
suart3 [speed]

This command sets the serial communication link (using UART?2 protocol) to the UART3 protocol. The
speed value determine the link speed in UART3. See the table on UART3 Line Speed Coding.

Code UART Speed

0x0000 | 115,200 bps (Legacy UART - Enterprise)
0x0001 | 78,800 bps

0x0002 | 57,600 bps

0x0003 | 38,400 bps

0x0004 | 28,800 bps

0x0005 | 19,200 bps

0x0006 | 14,400 bps

0x0007 | 9,600 bps

0x0008 | 1,843,200 pbs (Legacy UART - C&C)
0x0009 | 1,228,800 bps

0x000A | 921,600 bps

0x000B | 614,400 bps

0x000C | 460,800 bps

0x000D | 307,200 bps

0x000E | 230,400 bps

0x000F | 153,600 bps

0x0010 | 2.083... Mbps (16.6666Mbps/8)
0x0011 | 2.380... Mbps (16.6666Mbps/7)
0x0012 | 2.777... Mbps (16.6666Mbps/6)
0x0013 | 3.333... Mbps (16.6666Mbps/5)
0x0014 | 4.166... Mbps (16.6666Mbps/4)
0x0015 | 5.555... Mbps (16.6666Mbps/3)
0x0016 | 8.333... Mbps (16.6666Mbps/2)
0x0017 | 11.11... Mbps (16.6666Mbps/1.5)
0x0018 | 16.66... Mbps (16.6666Mbps/1)

get_serial_ list

This command returns a list of available serial commands.

44 UART

44.1 UART?2

With the Indy/Monza line of hardware, a new UART protocol was introduced: UART2. UART 2 is backwards
compatible with the original UART specification, so all of the existing CIL serial commands will continue to
function correctly. In addition, UART 2 adds several new serial commands as well as support for sending CDB
commands through the serial interface.

HGST Confidential 61

CHAPTER 4. USING THE SERIAL EXTENSION

4.4.2 UART 2 CDB Support

With UART 2 comes the ability to send regular CDB commands to the drive through the serial interface. There
are 2 steps that must be taken before a CDB can be sent through the serial interface.

First, it must be verified that the drive supports UART 2—this is done by issuing an sversion command. If the
response is 2, then the CDB commands (as well as all other UART 2 functionality) will be enabled.

Second, the UIL index must be changed so that it points to the serial driver. If there is only one driver
loaded, then the UIL index should already point to the correct driver. However, in most cases the serial index (set
using the “suil” command) points to the serial driver while the UIL index (set using the “uil set index” or “usi”
command)points to the main SCSI or F-CAL driver. All serial commands are sent to the serial index, but CDB’s
are sent to the uil index. So, the “uil set index” command must be changed to point to the serial driver before any
serial CDB commands may be issued. The following screen shot demonstrates this:

(uil=0:test) (dev=0)> #check the list of UIL drivers loaded
(uil=0:test) (dev=0)> uil 1list

0: test: v0.7.23: DeviceCount=20

1: spti: v0.7.8: DeviceCount=1

2: serial: v0.7.40: DeviceCount=1

=0:test) (dev=0)> #check the serial index
=0:test) (dev=0)> suil

:test) (dev=0)> #check the UIL index
:test) (dev=0)> uil get index

uil=0:test) (dev=0)> #change the UIL index to point to the serial driver
uil=0:test) (dev=0)> uil set index 2
IL Set To: 2: serial: v0.7.40: DeviceCount=1

(uil=2:serial) (dev=0)> #notice that the command prompt changes
(uil=2:serial) (dev=0)> #to now display "serial" as the current driver

Once the sversion command has been issued and the uil index has been changed to point to the serial driver,
CDB commands may now be sent through the serial interface. To send a CDB, follow the same procedure as
with the regular SCSI or F-CAL interface. The serial driver handles all the behind-the-scene serial protocol and
returns the expected data. All of the same CDB parameters are available—just issue the CDB command with all
desired parameters, and the CIL will construct the CDB command and pass it to the serial driver. Then, the serial
driver will wrap the CDB in the correct serial frame and perform all of the querying and data xfer stages. Finally,
the serial driver will receive the CDB response wrapped in a serial response block; the serial driver will strip the
response block header information and return to the CIL only the CDB response data. If an error occurs during
the communication, then the serial driver will attempt to correct the error, and upon giving up it will attempt to
request status. If the CDB command returns an error, then the serial driver will request status and return it to the
CIL.

For debugging purposes, it is not useful to have the serial driver perform all of the querying and data xfer
phases of the serial CDB command. Because of this, the individual serial commands are available that send
the CDB, query the drive, and transfer data. Note, however, that the UART 2 protocol must be followed for
these commands to be successful-the user is responsible for sending the squery commands and issuing the sxfer
commands at the correct times! Please see scdb (page 64), squery (page 64), sxfer (page 64), and sabortCDB
(page 64) for more information.

HGST Confidential 62

CHAPTER 4. USING THE SERIAL EXTENSION

44.3 UART3

With the Formidible line of hardware, a new UART protocol was introduced: UART3. UARTS3 is not back-
wards compatible with the UART?2 specification. However most of the UART2 commands have an equivalent
UART3 command. This required that a new driver, the Serial3 Driver, be created to handle all of the behind-the-
scene serial protocols, which was designed to act just like the original Serial Driver. Users can still send the same
CDBs to the drive just as they did with the Serial Driver. The Serial Extension did require an update as well.
It was modified so it will send the appropriate sread/swrite/etc commands to either the UART?2 (serial) driver or
UARTS3 (serial3) driver. The suil driver is the UIL that receives the serial command. This allows scripts that were
written before the UART3 specification was created to still work without any changes to it.

The Formidible line also supports UART?2. Because of this, we needed to create additional commands in order
for the user to switch to and from UART3. Hence suart?2 and suart3 speed were created. See below for
more information on these commands.

4.4.4 UART2 & UART3 Commands
The following commands remain the same in UART 3 as they were in UART 2.
sversion

This command takes no arguments, and it will return two bytes specifying the version of UART that the current
drive supports. Note the return value doesn’t mean that it supports UART2 or UART?3 protocols.
Here is an example of what the the sversion command will look like an a UART 2 drive:

(uil=0:serial) (dev=0)> sversion
Success

OFFSET 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 0123456789%abcdef

000000 00 05

sversion reference entry: page 283
sreset

The sreset command will initiate a reset on the drive. The drive will send a response block back indicating that
the command is acknowledged and then call the appropriate reset function. There are two parameters, 7command
flags? and ?drive type?. The drive type field is one byte long; however, currently only bit zero is used to specify
whether or not the drive is an Indy/Monza drive. If the drive is an Indy/Monza drive, then ?drive type? should be
setto 1. The 7command flags? parameter is a series of bits that specify what type of reset is to be performed.

The current Indy/Monza command flags are defined as:

Show Stop Flag (bit 0): If $1T then call Reset.ShowStop();

POR Reset Flag (bit 1): If S1T then initiate a Power On Reset

Hard Reset Flag (bit 2): If S1T then initiate a Hard Reset

Soft Reset Flag (bit 3): If S1T then initiate a Soft Reset
TmfShutdown Flag (bit 4): If S1T then initiate a Tmf Shutdown Reset
TmfSpindown Flag (bit 5): If S1T then initiate a Tmf Spindown Reset

o U W N

sreset reference entry: page 281

HGST Confidential 63

CHAPTER 4. USING THE SERIAL EXTENSION

scdb

The scdb command is one of the essential commands used for sending a CDB command to the drive through
the UART interface. To be successful, this command must be used in conjunction with squery, sxfer, and possibly
sabortCDB. The scdb command takes one parameter, ?length?, which specifies how many bytes to use from the
send buffer. Then a serial CDB command block is constructed, using the first ?length? bytes from the send
buffer as the CDB command to send. Note: the CDB length is checked to verify it is 6, 10, 12, or 16 bytes long;
however, the actual bytes are not checked to verify that they form a valid CDB. If there are no errors during the
communication, then the drive will return a busy response block, signifying that the drive received the command
successfully and is busy processing it. After sending a successful scdb command, the next phase should be the
query phase. scdb reference entry: page 276

sabortCDB

The sabortCDB command is one of the essential commands used for sending a CDB command to the drive
through the UART interface. In most cases, this command will be used in conjunction with scdb, squery, and
sxfer. The sabortCDB command tells the drive to abort any current UART CDB processing and return the UART
CDB handling to an initial state. This command takes no parameters, and it will return the entire header and
response block information received from the drive. This command is used when a CDB has been sent, but the
entire process of querying and data transfer cannot be completed. In this case, an sabortCDB command should
be issued to clear the state of the UART, and then the entire CDB phase must be started from the beginning. This
command may also be used as a last resort in effort to clear the state when an initial scdb command returns an
error. sabortCDB reference entry: page 276

4.4.5 UART2 Only Commands
sdelay

The sdelay command will tell the drive to change the delay between data receive and data send. The default
is for the drive to wait 250 micro seconds after receiving data before sending response data. The one required
parameter is an integer that specifies the new delay in micro seconds. On some older systems, 250 micro seconds
may not be enough time for the computer to be ready to receive response data—a communication sync problem
will occur. In this case, increasing the delay may correct this problem. sdelay reference entry: page 277

slip
The slip command will (on a Fibre Channel drive only) cause the drive to request LIP. There is one parameter,
7LIP type?, is a one byte value that will specify the type of LIP; it may be OxF7 or OxF8. The UART device will

return status acknowledging that it received the slip command, and then it will perform the appropriate tasks to
request LIP. slip reference entry: page 279

squery

The squery command is one of the essential commands used for sending a CDB command to the drive through
the UART interface. To be successful, this command must be used in conjunction with scdb, sxfer, and possibly
sabortCDB. The squery command takes no parameters; when issued, it will send a query frame to the drive, asking
for status on whether it is ready or not. This command is meant to be used to poll the drive after sending a CDB
frame and between data xfer stages. The squery will return 8 bytes of data (the entire busy, ready, or fault response
block). After issuing a successful scdb command, the squery command should be issued until a ready frame is
received. Also, after the data xfer phase is complete, the squery command should be issued until a ready response
block is received before a status data xfer command is sent. squery reference entry: page 279

sxfer

The sxfer command is one of the essential commands used for sending a CDB command to the drive through
the UART interface. To be successful, this command must be used in conjunction with scdb, squery, and possibly
sabortCDB. The sxfer command will send a data xfer command block to the drive. There are three basic types of

HGST Confidential 64

CHAPTER 4. USING THE SERIAL EXTENSION

data xfer commands that may be sent: inbound data, outbound data, and command status. There are 4 required
parameters that specify what type of data xfer to send. The ?Transfer Bit? parameter should be a 0 or 1 that
specifies which direction the data is going to be transferred (0 for inbound, 1 for outbound). The ?Status Bit?
parameter should be a 0 or 1 that specifies whether or not this data xfer frame should be used for transferring
status. If the status bit is set, then this command will request the return status of the CDB that was sent; this
should only be issued when the inbound/outbound data xfer stage is complete, or when the drive, after a query
command, returns a fault response block instead of a ready or busy response block. The last two parameters of
sxfer are ?Send Length? and ?Recv Length?. The send length will only be used if the command is an inbound
data transfer to the drive, and the receive length will only be used if the command is an outbound data transfer
from the drive. Since the actual bytes received during a data xfer command is read in on the header of the data
xfer response block, the 7Recv Length? parameter will be overridden. As long as the ?Recv Length? is greater
than zero, the correct amount of data will be read in and returned. sxfer reference entry: page 284

suart3

This command is new in conjunction with the UART3 Interface Specification. Note: This command is only
supported if the driver returns a value of 5 or higher for the UART Version command. This command requires
a coded speed value for the new speed for the interface. See Code & UART Speed Table for valid values. The
suart3 speed command causes the drive to switch to the UART3 protocol specification for this interface. The
drive will send a response block to the host in the UART?2 protocol and current speed indicating the command is
acknowledged. If the command was valid the change to the new protocol and speed will occur immediately after
the response is sent.

suart3 reference entry: page 282

4.4.6 UART3 Only Commands

sstatus

This command is the Get Drive State request which can be used by the host to check on the status of a long
running SCSI command (such as a manufacturing command). The drive will respond to the request with the ack
Data Available and will return a Get Drive State response followed by the state data.

Byte: Description:

0-1 Drive state version (0x0001)

2-3 Operating State (Equivalent to the Operating State field of Ing page 3.)
4-5 Functional Mode (Equivalent to the Functional Mode field of Ing page 3.)
67 Degraded Reason (Equivalent to the Degraded Reason field of Ing page 3.)
8-9 Broken Reason (Equivalent to the Borken Reason field of Ing page 3.)
10-11 Reset Cause (Value definition is beyond the scope of this document.)

12-13 Showstop state:
0x0000 — No Showstop has occurred.

0x0001 - Showstop has occurred and drive is ’stopped’.

0x0002 - Showstop has occurred and the drive is attempting to reset itself.
14-15 Showstop reason (Value definition is beyond the scope of this document.)
16-19 Showstop value (Value definition is beyond the scope of this document.)

sstatus reference entry: page 282
suart2

The suart2 command requests that the UART Interface gets set back to the UART?2 protocol. If a valid
request is received the drive will respond with the ack Ready and will immediately switch to UART2 mode at the
default speed.

suart2 reference entry: page 282

HGST Confidential 65

CHAPTER 4. USING THE SERIAL EXTENSION

4.4.7 Additional Helper Serial Commands
The following commands were created to help the user save time by automating steps for them.
suart_level

This command is used to get the current UART protocol. It does so by issuing an secho in both UART?2 and
UARTS3 protocols. Which ever one responds then that is what is returned. For example, if a drive is using the
UART?2 protocol then this command will return 2.

suart_level reference entry: page ??

srescan

This command performs a device rescan on the suil driver.
srescan reference entry: page 280

sspeed

This command gets/sets the speed of the suil driver. If no argument is given then the current speed is returned.
If one is given, it must be in bits per second (bps).
sspeed reference entry: page 282

4.5 Advanced UART Commands

This section will focus on specific advanced functionality of the serial driver, such as Indy/Monza simulator
support, manual port selection, and low level byte reading/writing.

4.5.1 Driver Parameters

Manual port selection

After the serial driver is loaded, the first serial command sent will cause a bus re-scan in an attempt to detect
all connected serial devices. This means that an echo command block will be sent to each available port, and a
device will be created for each port that responds. However, during drive debugging, this automatic scan is not
desirable. Using the “port” parameter while loading the UIL serial driver allows the auto scan to be disabled. The
format of this parameter is as follows:

uil create serial port ?PortName?

The correct port-name (COM1, COM2, etc) should be substituted for 7PortName?. This parameter will cause
the CIL to assume that a drive is connected to that port, and it will create the device without actually scanning the
bus. The advantage of this is that no information will cross the bus until the user manually sends a command.

4.5.2 Supported UIL Messages

The “UIL message” command (page 272) allows specific commands to be defined for each driver. The serial
driver has several messages that it recognizes.

get_delay and set_delay

The “get_delay” message takes no parameters; it returns the current delay (in ms) that the driver waits between
packets. The “set_delay” message takes on parameter, an integer. It changes the post packet delay to the new value
specified in ms.

get_retry_count and set_retry_count

The “get_retry_count” message takes no parameters; it returns the current number of times a serial command
block will be retried after a failed attempt. The default value is 5. Every command will be attempted at least once,
and then the retry count specifies how many more times it will be tried. The “set_retry_count” takes one integer
parameter that changes the retry count.

HGST Confidential 66

CHAPTER 4. USING THE SERIAL EXTENSION

get_poll_count and set_poll_count

The “get_poll_count” message takes no parameters; it returns the current number of times a drive will be
polled during a CDB send before giving up. If the drive returns busy after “poll count” polls, then the driver will
stop polling and return the error of the last query command. The default poll count is 5. The “set_poll_count”
message takes one integer parameter that changes the poll count.

get_stats and reset_stats

The serial driver has built in error logging. A count will be kept of bytes sent, bytes received, commands
sent, protocol errors, and timeout errors. Also, every response byte will be logged in a table with a count of how
many times it has been seen. These counters are all set to zero when the driver is loaded as well as every time the
uil message "reset_stats" command is called. The uil message "get_stats" command will
print out report of the current logging statistics.

4.5.3 sio

For debugging situations, it may be useful to have direct control over what bytes are sent over the serial
interface. The sio provides a way for doing this; this command is very low level, sending and receiving only the
number of bytes specified. The sio command takes 2 arguments; ?send length? and ?recv length?. When issued,
the driver will open the serial port, raise the RTS line, and send ?send length? number of bytes from the send
buffer. Then, the RTS line will be dropped and the driver will attempt to read in ?recv length? number of bytes into
the receive buffer. If all zeros are returned, then most likely the driver was not able to read any data. After both the
send and receive stages are complete, the serial port is closed and the data (if any) is returned to the CIL. It is very
difficult, but possible, to send a valid serial command using the sio command. Each packet must be individually
sent two bytes at a time with a 1 byte receive length, then the response byte must be checked for errors. Because
of this, it is recommended that sio be used only as a debugging tool to verify that serial communication exists.

4.6 Tips and Tricks

The UART protocol is based upon timing; if the drive and CIL are not in sync, then communication will
not occur. Therefore, accurate timing is imperative! Because timing within the serial driver is implemented in
software, accuracy is difficult to achieve. Every time the serial driver is loaded a calibration process is called; this
process will attempt to choose correct timing parameters based on the speed of the machine it is running on. To
achieve an accurate calibration, it is recommended that the CPU load be at a minimum while loading the serial
driver!

Another implication of a software based timing scheme is variability. Just because the calibration is accurate
doesn’t mean that the timing length will be exactly the same every command. In some cases, one or more bytes
may be lost if the timing loop runs longer than it should; this is especially common when the CPU load is at
a maximum during serial command processing! Because of this, it is recommended that the CPU load be at a
minimum while executing serial commands; especially lengthy procedures, such as a big memory dump! However,
the UART protocol does have error recovery built in and the serial driver has a retry count for failed commands,
so usually small timing errors are corrected before they are returned to the user.

If the UART communication seems unreliable, there are a few things that can be done. First issue a “get_stats”
(page 67) message to the serial driver to display the error logging statistics. If there are a lot of timeout errors
or protocol errors, then a sync problem may exist. Also, if there are large counts of ack bytes other than 0x80
(the ack byte for good status), then this may also indicate problems. Here are some possible remedies to sync
problems:

e The “sdelay” command (page 64) may be used to change the delay that the drive uses between the read and
write phase.

e The “set_delay” message (page 66) may be used to change the time that the serial driver waits between
sending packets.

HGST Confidential 67

CHAPTER 4. USING THE SERIAL EXTENSION

e The “device set timeout” command (page 226) may be used to change the amount of time, in milliseconds,
that the serial driver will listen before returning a timeout.

HGST Confidential 68

Chapter 5

Brief Introduction To TCL

To this point we have been concentrating on the Niagara extensions to TCL. In this section, we will look at
the basics of TCL syntax. Although we will be touching on the basics of TCL in this chapter, there is simply not
enough room in this users guide to go into depth on TCL’s features. If you want more information the official
TCL manual can be found at http://www.tcl.tk/man/tcl8.5/. In this chapter I will use the > character to represent
command input. Lines without the > character represents the text that will be returned by TCL when the command
above is typed. Now we will try a basic TCL command, available in all versions of TCL:

> puts "hello world"
hello world

The puts command is TCL’s version of “print to screen”. Another useful command is the expr command.
This command is used to perform math calculations:

> expr 5 + 5
10

5.1 TCL Variables

All TCL variables start with a $. To set a variable use the following command:

> set varname value
value

Note that the set command does not expect (or want) the $ in front of the variable name you are defining.
There are two ways to check the value of a variable, set and puts. The following two commands have the same
effect:

> set varname
value

> puts S$varname
value

Notice how you need to include the $ operator for the put s command but not the set one. Once a variable
is defined, it can be used in place of a command argument, for example:

> set 1lba 100
100

> set tl 2

2

> rl0 $1lba $tl

is equivalentto r10 100 2.

5.2 Table Of TCL Commands

Below is a list of commands included in TCL. Note that this list does not contain any of the CIL specific
commands. See section 3.4 on page 35 for CIL specific commands. The list also does not include any of the Tk
extension commands. Here is the list:

HGST Confidential 69

CHAPTER 5. BRIEF INTRODUCTION TO TCL

| Command Name | Description

5.3 TCL Syntax

The execution model that TCL uses can be somewhat strange for beginning programmers. This is because
TCL works as a string parser, which is a little different from other languages. Here we give some rules on how
TCL parses a command that is typed.

1. Commands are broken into tokens. Each token separates other tokens by one or more spaces or tabs.

2. The first token of a command is the command type. All other tokens on the same line are considered
arguments to this command type. Ending a line with { or \ tells the interpreter that the command continues
on the next line.

3. Enclosing characters in quotes (" ") tells the interpreter to treat everything between the quotes as a single
token (spaces and tabs are a part of the token). However, variables (words that start with $) and bracket
expressions are still substituted.

4. Enclosing characters in braces ({}) also tells the interpreter to treat everything between the braces as a
single token (spaces and tabs are a part of the token). Variables and bracket expressions are not substituted.

5. Enclosing characters in brackets ([]) causes the interpreter to evaluate the characters in between the
brackets as a separate command, then insert the return value where the brackets used to be.

Now for some examples to clarify the rules given above. Let us start with the program lines:

> set animal dog
> set number 3

In the example

> puts dog
dog

The command type is put s. The command has one argument, dog. Here is another example:

> puts the dog is 3
wrong # args: should be "puts ?-nonewline? ?channellId? string"

The command type is puts. The command has 4 arguments: the, dog, is and 3. This is too many arguments
for puts (you will get an error). Here is another example that uses quotes to fix the problem:

> puts "the dog is 3"
the dog is 3

Here we used quotes to represent “the dog is 3” as a single token. Here is an example with variables:

> puts "the $animal is S$Snumber"
the dog is 3

Because we used quotes, variables are expanded. If we do not want variable substitution, we use { }, as shown
here:

HGST Confidential 70

CHAPTER 5. BRIEF INTRODUCTION TO TCL

> puts {the $animal is $number}
the $Sanimal is S$Snumber

Note that in many TCL commands (such as i f, for and proc) using {} is a useful way to pass segments of
code. For example:

> set 1 hello
> for {set i 0} {$i < 10} {incr i} "puts $i"
<prints hello 10 times>

Here we used “” for our command block, this causes the i variable to be substituted with hello before the for
command ever sees it. Switching to braces:

> set 1 hello
> for {set i 0} {$i < 10} {incr i} {puts $i}
<prints 0 through 9>

Now the setting of $1i is defferred to when the for command calls it. This is probably the effect we wanted.
Notice that, unlike C, we are not forced to use a { after the for command, it just makes more sense do to so most
of the time. Lastly we look at the bracket notation:

> expr 2 + 3

5
> puts "8 x 7 = [expr 8 x 7]"
8 = 7 = 56

Here the interpreter calls the command expr 8 =« 7 as a separate command then places the result in the
string.

5.4 Running TCL Commands From A File
To run TCL commands in a file, use the source command. For example:

source test.tcl

The source command executes the commands it finds in the specified file immediately. The source
command can either be used to quickly execute a series of commands or to define procedures.

5.5 Multiple Statements Per Line

You can declare multiple statements per line by placing a semicolon (;) between commands. As an example:

> set 1 0

> while {$1 < 5} {
puts $i
incr i

}
can be stated on one line using a semicolon:

> set 1 0; while {$i < 5} { puts $i; incr i }

HGST Confidential 71

CHAPTER 5. BRIEF INTRODUCTION TO TCL

5.6 Comments

A comment in TCL is declared by a # sign. Note that the pound sign must begin a line. You can get around
this, however, by putting a semicolon directly before the pound sign. Here are some examples:

> # This is a comment
> set 1 0 # This is not allowed
> set 1 0 ;# A semicolon is a workaround, however

5.7 Control Flow Commands

TCL’s control flow commands enable you to loop commands repeatedly or process commands conditionally.
Control flow commands work exactly like other TCL commands in that the first token is treated as the command
type and other tokens are treated as arguments to the command. This means that all of the commands in a for
loop are treated as a single argument! It also means that, if you are extending a conditional statement to multiple
lines, the first line must contain an open brace. Putting the brace on the next line confuses TCL into thinking that
a new command is about to start. Here are some examples:

if {$a > 10} {

#everything from the brace above

puts $Sa

#to the brace below

#is treated as a single argument to the if command

if {$a > 10}

{
#putting the open brace on
#the next line 1s not allowed
#because tcl thinks that
#you started a new command

}
5.7.1 The if Command
The format for the 1 £ command is as follows:
if <condition> <commands>
Here is an example:
if {$lba > $maxlba} { set lba 0 }
You can also use the el se and elseif tokens to create a conditional chain. Here is an example:

if {$Sage < 13} {
set type child

} elseif {$age < 20} {
set type teen

} else {
set type adult

HGST Confidential 72

CHAPTER 5. BRIEF INTRODUCTION TO TCL

5.7.2 The for Command

The for command is a convienent way to set up a loop. The basic syntax is:
for <initial condition> <ending condition> <loop iterator> <statement block>
Here is an example that performs 10 block sequential reads:

for {set 1 0} {$1 < 1000000} {incr 1 10} {
readl0 $1i 10
}

5.7.3 The while Command

The while command is similar to the for command. The difference is that the while command excludes
the initial condition and the loop iterator. The syntax is:

while <ending condition> <statement block>

The while command will iterate until the ending condition is met. Here is an example which emulates the
for example above:

set 1 0

while {$i < 1000000} {
readl0 $i 10
incr i 10

}
5.7.4 The foreach Command

The foreach command is useful for iterating through a list of items. The syntax is:
foreach <variable name> <list> <statement block>
Here is an example:

foreach i {1 2 3 4 5} {
puts $i

Here is another example that uses the output of get_cdb_1ist to print out documentation for all available
CDB commands:

set cmd_list [lsort [get_cdb_list]]
foreach cmd $Scmd_list {
puts [eval "$cmd —-help"]

HGST Confidential 73

CHAPTER 5. BRIEF INTRODUCTION TO TCL

5.7.5 The switch Command

The switch command is used to select between a list of choices. The basic syntax is:

switch <options> -- <variable> <list>
where <list> contains:

<<keywordl> <actionl> <keyword2> <action2> ...>
Here is an example:

switch —-exact —-- S$name {
rover {set type dog}
cuddles {set type cat}
poly {set type bird}
default {set type unknown}

5.8 Defining Procedures (Functions)

Like most programming languages, TCL allows you to define functions that can later be called by name. In
TCL these are called procedures. Here we define a simple procedure:

proc add {a b} {
set ¢ [expr $a + $b]
return S$c

No we can use add as if it were built into TCL:

> add 2 3
5

Note that variables declared inside a proc statement are considered to be local. This means that if we are
using the variable c outside the add prodecure above, it will not be overwritten. For example:

> set ¢ 111

111

> add 3 4
9

> puts Sc
111

In some cases we want to have a variable change inside a procedure effect a global variable. To accomplish
this we identify the variable with the global statement. Here is the procedure above rewritten with the global
statement used:

> proc add {a b} {

> global c

> set ¢ [expr $a + $b]
> return S$c

>}

HGST Confidential 74

CHAPTER 5. BRIEF INTRODUCTION TO TCL

> set ¢ 111

111

> add 3 4
7

> puts S$c
-

It is also possible to have a variable number of arguments passed to a procedure. See a book on TCL for a
more detailed description of proc.

5.9 Arrays

In TCL, an array is a variable with a string index in parathenses. Below are some examples of legal arrays:

set index (5) 26
set address(zip_code) 55906
set address(street_name) "Maple St"

5.10 Lists

TCL also provides support for lists. To declare a list, use the 1ist command:

> list nathan matt jason luke
nathan matt jason luke

Here are various operations that can be performed on a list:

> set names [list nathan matt jason luke]
nathan matt jason luke

> lsort S$names

jason luke matt nathan

> lappend names ben

nathan matt jason luke ben

> linsert S$names 2 chad

nathan matt chad jason luke ben

There are also other operations that can be performed on lists such as 1index, 1length, lrange, 1search,
lreplace, and others. The website www.tcl.tk is a great resource for more information on lists.

5.11 String Manipulation

Being a string based language, TCL has a number of provisions for manipulaing string expressions. Some
examples include join, split, append, string, reqexp and regsub. A full description of string functions can be found
in a dedicated TCL book. Below I give some simple examples that illustrate some of the possibilities:

> set str hello

hello

> append str " " there

hello there

> join $str ","

hello, there

> string match "xthere" S$str
1

HGST Confidential 75

CHAPTER 5. BRIEF INTRODUCTION TO TCL

> string match "there" $str
0

> string length $str

11

> string toupper S$str

HELLO THERE

> string trim " spaces
spaces

5.12 File Operations

File operations in TCL are straight forward. Use the open command to get a file handle on a file. The use
puts, gets, read, and write (and more...). To access the file. Here is an example that numbers the lines in a
file and prints them to the screen.

proc dump_lines {filename} {
set line_num 1
set fd [open "$filename" r]

while { [gets $fd line] != -1 } {
puts "$line_num) S$line"
incr line_num

close S$fd

Here we extend the function above to write it’s output to a file:

proc dump_copy_line {infile outfile} {
set line_num 1
set in [open "$infile" r]
set out [open "Soutfile" w]

while { [gets $in line] != -1 } {
puts $out "$line_num) $line"
incr line_num

close $in
close Sout

If you want to read binary data, use the read command. The format for this command is read <file id> <length>.
An example of it’s use is:

set buffer [read $fd 2048]

HGST Confidential 76

CHAPTER 5. BRIEF INTRODUCTION TO TCL

5.13 Introduction To The TK gui extension

Like TCL itself, the TK extensions to TCL are too numerous to fully explain here. Again www.tcl.tk is a great
resource for a full explanation. Below I give a simple example of how to create a window in TCL and attach an
“Inquiry” and “Test Unit Ready” button to it. First we will create the window. The command for this is:

> toplevel .mywindow

Where .mywindow is the name of the window we are creating. This command will bring up a new empty
window. Now to add a couple of buttons to it:

> button .mywindow.ing -text "Inquiry" -command {puts [ing]}
.mywindow.ing

> button .mywindow.tur -text "Test Unit Ready" -command {puts [tur]}
.mywindow.tur

> pack .mywindow.ing .mywindow.tur

At this point you will have two new buttons in your window. Clicking on them performs the commands
specified in the —~command argument of each button. Like I said, this is just the tip of the iceburg in what you can
do in TK. A dedicated book on TCL/TK will go into more detail.

HGST Confidential 77

Chapter 6

Error Handling Techniques And Variables

6.1 Introduction

Niagara has several special variables that are set and referred to during device error situations. These variables
allow program code to quickly discern an error type and properties. Alternatively, you can use TCL’s built in
catch command as a method of trapping just about any error condition. This section discusses both methods of
error handling.

6.1.1 General and CDB Errors

The basic difference between general and CDB errors is as follows:

e Device errors relate only to CDB commands. Examples include CHECK_CONDITION and TIMEOUT. And
example of error types that do not apply are syntax errors, out of memory, and file not found.

e General errors include all errors, including all listed in the previous bullet.
To handle errors, the following techniques are used:

e Device errors are handled with the Sec, Ssns, Serr and Scdberr variables.

e Generic errors can be handled with the cat ch statement.

Why Two Error Types?

There are three reasons we distinguish CDB errors from general errors:

e CDB errors can be tedious to deal with using the cat ch statement

e Because catch also catches generic errors, it will also trigger on syntax errors and other non drive related
errors. Discerning these two types of errors when using catch is the responsibility of the user.

e There are times when a lot of drive errors are expected (such as in drive testing). Special CDB error handling
allows these situations to be handled in a cleaner fashion.

6.2 Global Variables

The global variables described in this section are related to CDB errors only. They are invalid in any other
error context. Note that in order to use these variables within a procedure, you need to declare them global. For
example:

proc test {} {
global ec
global sns

if {[catch {ing 1}]} {
puts "ec = Sec"
puts "sense data = S$sns"

}

HGST Confidential 78

CHAPTER 6. ERROR HANDLING TECHNIQUES AND VARIABLES

Why Are These Variables Global?

These variables are global for two reasons:

o If a test program ends, these variables can be used interactively to get more information. If these variables
were local they would be lost as soon as the procedure exited.

e Many of these variables are mapped into TCL in a way that makes access very fast. This technique requires
the variables be global.

6.2.1 ec

This variable returns a CIL error code. See appendix B on page 112 for a list of possible codes. The $ec
variable can be used to easily check if an error is of a certain type (such as a timeout or check-condition).

6.2.2 err

This variable is set to the string value of the last error that occurred. It is most useful when used with
$cdberr. Note that $err is only overwritten when an error occurs. This means that you should not check
Serr to see if an error occurred on the last command, use $ec for that.

6.2.3 sns

This variable contains a list of the sense data that was returned by the last command. Note that, for perfor-
mance reasons, this data is only valid updates when $ec = -16 (check condition). Always check $ec before
trusting the contents of this variable.

To access the individual bytes of the sense data use 1 index. For example:

ing 1
set byte2 [lindex $sns 2]
puts "byte 2 of the sense data is S$Sbyte2"

6.3 The Local Variable: cdberr

Currently, the only local variable is $cdberr. This variable can be used to assign custom error handling
code to an cdb error event. The way the variable works is that, if the variable is set, a CDB error will execute
the contents of the variable (instead of the default operation of returning an error). We will start with a simple
example to show how this works:

proc testl {} {
puts [ing 4]
puts [ing 5]

}

testl

In this example the first command will fail and return an error. The second command will never be executed.
The results from this script will look something like:

CMD: 12 00 04 01 00 0O

<E> Check Condition At

70 00 05 00 00 0O OO 18 00 00 00 OO 24 00 00 CO

HGST Confidential 79

CHAPTER 6. ERROR HANDLING TECHNIQUES AND VARIABLES

00 02 00 00 F8 23 00 00 00 OO OO OO 00 00 00 0O

Translation: Illegal Request. Invalid Field in CDB.

Now we will override this default functionality with our own cdb error handling. If we modify the function as
shown:

proc test2 {} {
global ec

set cdberr {
puts "The function had an error code of S$Sec"

puts [ing 4]
puts [ing 5]

test2
The output will now be:

The function had an error code of -16

The function had an error code of -16

In the example above, we override the default operation of the cdb error handling with new functionality by
setting cdberr. Note that in the example above no errors are generated. This is why the second inquiry in the
code was executed. Alternatively we may want an error to be generated but reported in an alternate way. We
simply change the script to generate an error in $cdberr:

proc test3 {} {
global ec

set cdberr {
error "The function had an error code of S$ec"

puts [ing 4]
puts [ing 5]

test3

6.3.1 Restoring default behavior

To restore default error handling, unset $cdberr as follows:

unset cdberr

HGST Confidential 80

CHAPTER 6. ERROR HANDLING TECHNIQUES AND VARIABLES

6.3.2 Why is cdberr local?

There are two reasons that Scdberr is local:

e To protect procedures from changing command line behavior

e To protect procedures from effecting each others error handling behavior

By keeping $cdberr local, a script can assume that it is in a certain error state upon startup. The command
line error state will also remain unchanged (unless you explicitly set Scdberr at the global level).

6.3.3 Some Examples

To return the errors as normal with some extra information, we use the Serr variable:
set cdberr { error "$Serr \n The function had a return code of S$Sec" }

When defining this in a procedure, don’t forget to make Serr (and in the above case Sec) global. If we
simply want to print errors, we use puts above in place of error. We can also log errors to a file like this:

set cdberr {
set logfile [open "logfile.txt" "a"]
puts $logfile "- - "
puts $logfile "At [clock format [clock seconds]]:\n"
puts $logfile Serr
flush $logfile
close $logfile
error Serr

Again remember to make Serr global when defining $cdberr in a procedure and we can use put s in place
of error to log cdb errors without generating TCL errors.

6.4 Using catch

An alternative to using $cdberr above is the catch statement. Catch is a more general handling method
that has the following syntax:

catch { commands } var

When catch is run as above, it will execute “commands” and put the result in var. The return for catch
is 0 if the command completed without error and 1 if an error occurred. Using this information, we can set up an
example:

set errflag [catch { ing 5 } wvar]
if {S$Serrflag} {
puts "An error occurred:"
puts S$var
} else {
puts "The command completed successfully:"
puts S$var

HGST Confidential 81

CHAPTER 6. ERROR HANDLING TECHNIQUES AND VARIABLES

You can also use $Serr, $Sec, and $sns as they are used in previous examples:

proc test {} {
global ec

set errflag [catch { ing 5 } wvar]
if {S$errflag} {
puts "An error occurred:"
puts "ec = S$ec"
} else {
puts "The command completed successfully:"
puts S$var

test

6.4.1 Choosing Between cdberr and catch

In cases where you are testing for errors not related to sending CDB’s, catch is your only option. When
dealing with CDB commands however either can be used. Much of this choice depends on which approach fits
best with your programming style. There are also cases where it makes sense to combine catch and $cdberr.
For example, if you want errors to be reported in a special way, except in certain cases, such as the following

code:

proc test {} {

global err
global ec

#We would like to see the error code as well
set cdberr {
error "Serr \n ec = Sec"

supported by generic cdberr above
ing

#if we fail here, do additional processing
if {[catch {rl0 [randlbal} varl} {
#additional error processing here...

This code handles errors in a special way through $cdberr but also uses catch to do additional processing
when the read CDB fails. Note that when used in this context, Scdberr must return an error of the catch

statement will never be flagged.

HGST Confidential

Chapter 7
Random Number Generation

7.1 Introduction

To compliment TCL’s built in expr rand () function, Niagara includes a suite of random commands. These
commands extend the functionality of TCL’s random number generation capability, adding the following features:

e Creation of up to 1024 independent random number generation channels (rand open, rand close)

e Each channel can be seeded independently (rand seed)

Each channel can contain optional histogram constraints (rand addhist, rand showhist)

Each channel can produce integers or integer ranges (rand int, rand range)

Each channel can produce floats or float ranges (rand float, rand frange)

These features allow for more robust control over what types of random numbers are generated and improves
the reproducibility of these numbers (by offering independently seeded random number channels).

7.2 Basic Use

This section explains basic random commands that can be used without being concerned with random channels
or histograms. The most basic commands are:

rand int

rand float

rand range <min> <max>
rand frange <min> <max>

The rand int command returns an integer between O and OxFFFFFFFF. The rand float command
returns a floating point number: 0.0 < n < 1.0. The rand range command returns an integer: min <
n < mazx. The rand frange command returns a floating point number: min < n < max. Here are some
examples of the commands in use:

rand int

rand float

rand range 0 255

rand frange 0.0 6.28319

To reseed the random number generator, use the rand seed command. This command takes an integer
values as an input. Here are some examples:

rand seed 1234
rand seed [clock seconds]

HGST Confidential 83

CHAPTER 7. RANDOM NUMBER GENERATION

7.3 Using Channels

Channels allow you to use several independent random channels at the same time. Here is an example that
uses a lot of random numbers:

rand seed 12345

for {set i 0} {$i < 5} {incr i} {
set len [rand range 1 64]
bfr send 0 [expr S$len » 512]
set 1lba [randlba $len]
puts "writing S$len blocks at lba $lba"
#just a test
#wl0 S$lba S$Slen

This script will produce the following output:

writing 23 blocks at lba 119994285
writing 1 blocks at lba 136511712
writing 2 blocks at lba 39966460
writing 59 blocks at lba 104881024
writing 32 blocks at lba 27510689

This script will run fine and will produce identical numbers each time it is run (because we set the seed). This
script, however, has a subtle problem. The problem is that all of the random numbers are highly interdependent.
For example say you make a subtle change to the blocksize (using 520 instead of 512):

rand seed 12345

for {set i 0} {$i < 5} {incr i} {
set len [rand range 1 64]
bfr send 0 [expr S$Slen x 520]
set lba [randlba $len]
puts "writing $len blocks at lba $1lba"
#just a test
#wl0 Slba $len

You now get these results:

writing 23 blocks at lba 51031861
writing 38 blocks at lba 40581075
writing 49 blocks at 1lba 143141557
writing 5 blocks at lba 2564612

writing 36 blocks at lba 137440182

Completely different numbers! The problem is that rand range, bfr, and randlba are all sharing the
same random number generator. Changing the number of random bytes need by bfr from 512 to 520, effected
the other two commands. These situations are one area where random channels can help. Here is the first script
(512 version), modified to use multiple channels:

HGST Confidential 84

CHAPTER 7. RANDOM NUMBER GENERATION

set
set
set

for

rlen [rand open 12345]
rbuff [rand open 23456]
rlba [rand open 34567]

{set 1 0} {$i < 5} {incr 1} {

set len [rand range 1 64 Srlen]

bfr send 0 [expr $len x 512] Srbuff
set lba [randlba $len $rlba]

puts "writing S$len blocks at lba $lba"
#just a test

#wl0 S$lba S$len

rand close S$rlen
rand close $rbuff
rand close S$Srlba

The result of running this script is:

writing 23 blocks at 1lba 74485584
writing 13 blocks at lba 60777058
writing 48 blocks at lba 36466626
writing 60 blocks at lba 24134585
writing 28 blocks at lba 130652177

Now we change the blocksize to 520:

set
set
set

for

rlen [rand open 12345]
rbuff [rand open 23456]
rlba [rand open 34567]

{set 1 0} {$1i < 5} {incr 1} {

set len [rand range 1 64 Srlen]

bfr send 0 [expr S$len x 520] Srbuff
set lba [randlba S$len S$rlbal

puts "writing $len blocks at lba $1lba"
#just a test

#wl0 S$lba S$len

rand close $rlen
rand close S$rbuff
rand close S$Srlba

The result is still:

writing 23 blocks at lba 74485584
writing 13 blocks at lba 60777058
writing 48 blocks at lba 36466626
writing 60 blocks at lba 24134585
writing 28 blocks at lba 130652177

HGST Confidential

85

CHAPTER 7. RANDOM NUMBER GENERATION

In our new script, we used a separate random channel for our Iba, transfer length, and buffer data. Because
we are using three separate channels, we can made modifications to an area (such as the block size), without
effecting the other two streams. Another advantage to channels is that we can apply histogram constraints to the
values produced. Histograms are explained in the next section. To open a new random channel use the command
rand open. The format for this command is:

rand open ?seed?

The ?seed? value is optional. If you do not specify a seed, the current time is used as a seed. Another good
source for a seed is the rand int command, which will retrieve a random number from channel 0. Opening
a new channel returns a channel id. You generally want to save this id so that you can later use it to refer to the
channel:

set id [rand open]

Channel zero is a special random channel in that it is always open (you can not close it), and you can not
apply histogram information to it. The rand open command will never return a channel id of zero (because it
is already open, always). Any random commands that do not have a specified random channel are using channel
0. To close a channel, use the rand close command:

rand close ?channel?

It is a good idea to close random channels when you are finished with them. Niagara can have up to 1024
random channels open at a time.

To use a random channel, you simply refer to the channel id in the appropriate command’s argument list. The
following commands support channel ids:

buff fill rand <index> <offset> <length> ?channel?
rand float ?channel?

rand frange <min> <max> ?channel?

rand int ?channel?

rand range <min> <max> ?channel?

rand seed <seedval> ?channel?

Histogram related random commands require a channel id. These commands are described in the next section.

7.4 Using Histograms

Histograms allow you to fine tune the type of random numbers a particular random channel generates'. When
you add histogram information to a channel, you are specifying the likelihood that the value returned falls within
a specified range. Examples of this will follow. Here is an example list of some of the things that can be done
using histograms:

e Fill a buffer with 10% zeros and 90% OxFF.

e Test the inner cylinders of a drive 60 percent of the time, the middle cylinders 30 percent of the time and
the outer cylinders 10 percent of the time.

e Ensure that a particular transfer length will be used 10% of the time

o Simulate different “3 sigma” ranges during off-track read-write tests

You cannot add a histogram to channel 0

HGST Confidential 86

CHAPTER 7. RANDOM NUMBER GENERATION

To add histogram data to a channel, use the rand addhist command. The format for this command is:
rand addhist <channel> <min> <max> <percent>

The effect of this command is to tell the channel that you want to see random values between min and max
“percent” of the time. When you call rand addhist multiple times on the same channel, the results are
stacked together, creating a histogram profile. You can stack up to 32 histogram entires per channel. In this
example, we are filling a buffer with 0x00 50% of the time, 0x55 25% of the time and 0XAA 25% of the time:

set r [rand open]

rand addhist $r 0x00 0x00 50
rand addhist $r 0x55 0x55 25
rand addhist $r OxAA OxAA 25

bfr send 0 512 Sr
In this example, we set a random channel to return numbers that are either 0-2 or 8-10 (but never 3-7):

set r [rand open]
rand addhist $r 0 2 50
rand addhist $r 8 10 50

for {set i 0} {$i < 20} {incr i} {
puts -nonewline "[rand int $r] "

}

puts nmnn

rand close $r

To look at the current histogram status of a channel, you can use the rand showhist command. Here is
the output for our buffer example above:

set r [rand open]
rand addhist $r 0x00 0x00 50
rand addhist $r 0x55 0x55 25
rand addhist $r OxAA 0xAA 25
rand showhist S$r

vV V V V V

Entry # Min Max Percent
1 0.000000 0.000000 50.000000
2 85.000000 85.000000 25.000000
3 170.000000 170.000000 25.000000

What happens if we do not use up 100% of our potential histogram space? Basically the remaining percentage
is returned as a default value. Here is the example, modified above:

> set r [rand open]
> rand addhist $r 0x00 0x00 50

HGST Confidential 87

CHAPTER 7. RANDOM NUMBER GENERATION

> rand addhist $r 0x55 0x55 25
> rand showhist S$r

Entry # Min Max Percent
1 0.000000 0.000000 50.000000
2 85.000000 85.000000 25.000000
3 Default Default 25.000000

Note that “Default” means different things to different commands. For example, the default range for the
rand int command is 0-OxFFFFFFFF where the default range for the rand float command is 0.0-1.0.

If we define more than 100% for our histogram profile, the less likely entries we defined will never get called.
The rand showhist command will show this. Here is an example where we use 175% of our histogram space:

> set r [rand open]
> rand addhist $r 0 1 50
> rand addhist $r 1 2 30
> rand addhist $r 2 3 75
> rand addhist $r 3 4 20
> rand showhist $r
Entry # Min Max Percent
1 2.000000 3.000000 75.000000
2 0.000000 1.000000 25.000000
3 1.000000 2.000000 0.000000
4 3.000000 4.000000 0.000000

Here is a breakdown of the results:

e Our 75% entry is the most likely. Niagara puts the most likely histogram entries at the top of the list (for
best performance).

e Our next likely entry is our 50% entry. However our first entry has already taken 75% of our histogram
space, this leaves only 25% of the space left.

e Now our histogram space is maxed out at 100%, our remaining two entries will never be called as a result.

The real moral of this story is that you should avoid defining more than 100% of your histogram space anyway.
Defining more than 100% does not make sense.

HGST Confidential 88

Chapter 8
Command Queueing

8.1

Introduction

Using certain drivers, Niagara offers support for command tag queuing. The queuing features of Niagara are
as follows:

The ability to send a series of commands concurrently to a device, without waiting for status from each
command.

The ability to send a sequence of commands to a device in rapid succession. Certain drivers (i-Tech) sup-
ports this functionality in hardware while others (Linux) emulate this functionality using a tightly optimized
C loop (i.e. without the TCL overhead)

The ability to specify a certain tag or have tags auto-generated for you

The ability to wait for any tag to complete, to wait for a specific tag to complete or to wait for all tags to
complete.

Support for simple, ordered or head of queue tagging
Ability to mix different tag types in the same queue

The ability to retrieve status and data for each command returned by the device from a list

These functions are implemented through the following commands:

HGST Confidential 89

CHAPTER 8. COMMAND QUEUEING

’ Command Name \ Description

gmode concurrent Puts Niagara in concurrent queuing mode. In this mode com-
mands are sent immediately but status on the commands is de-
ferred

gmode disable Puts Niagara in normal (non queued) mode

gmode stacked Puts Niagara in stacked queuing mode. In this mode commands
are built up in a table and then executed with a gctl send
command.

gctl get auto_incr Returns 1 if auto tag increment is enabled, O otherwise

gctl get tag_type Returns the current tag queuing mode

gctl get num_waiting Returns the number of commands (if any) that the drive has
returned status on

gctl get max_depth Returns the current maximum queue depth

gctl idx_info <index> ?-1ist? | Returns status information for the specified queue index. Call
this command after gct1l recv tagor gctl recv all
to get more information about command completion status

gqctl recv Waits for and retrieves the next available command from the
queue, status is given like a normal command

gctl recv tag <tag_id> Waits for and retrieves the commands from the device until tag
<tag_id> is received. Returns success (and command data
for tag_1id) if all commands up to and including <tag_id>
were completed successfully or an error if any of the commands
did not

gctl recv all Waits for and retrieves all outstanding commands from the de-
vice. Returns success if all commands were completed success-
fully or an error if any of the commands did not.

gctl send Sends a command table built in memory. Only applicable in
gmode stacked mode.

gctl set auto_incr <1/0> Used to enable or disable automatic tag increments

gctl set next_tag <val> Set the tag id for the next command to be sent

gctl set tag_type <type> Sets a particular queuing mode. Options for <type> are
simple, ordered, and head

gctl set max_depth Sets the current maximum queue depth

gctl table_info Returns a formatted table indicating status of all received
commands. Call this command after gctl recv tag or
gctl recv all to get more information about command
completion status.

gctl tag_info <index> ?-1ist? | Returns status information for the specified queue tag. Call
this command after gct1l recv tagor gctl recv all
to get more information about command completion status.

Note that some or all of these features may not be available, depending on your driver. For example, the SPTI
driver does not support queuing at all while the Linux driver doesn’t support queuing types other than simple.

8.2 General Usage Stacked Mode

To start we will issue 16 random queued reads to the drive from the command line, we will then look at the
returns using various techniques. Stacked queuing mode allows us to build up a list of commands in an internal
table and send them to the drive all at once. With some drivers, this mode is even hardware assisted. A benefit of

HGST Confidential

90

CHAPTER 8. COMMAND QUEUEING

stacked mode is that it allows us to effectively achieve queue depths interactively from the command line, whereas
this would not be possible in concurrent mode. To begin our look at command queuing we will put Niagara in
stacked queuing mode:

gmode stacked

We’ll also say that we would like Niagara to automatically increment queue tags for us with an initial tag id
of zero:

gctl set auto_incr true
gctl set next_tag O

Building A Sequence

Now we will issue a command:
r1l0 [randlba]

Note that instead of returning status of the read operation, the r1 0 command above returns a number (0). This
number is the queue tag id that the command will have when it is sent to the drive. Because we are in stacked
mode, the command has not been sent to the drive yet, but placed in an internal table. Next we will add 15 more
random reads to the table:

do 15 {rl0 [randlbal}

Receiving Commands

Above we added 15 additional read operations to our internal table, each with an incrementing queue tag.
Including our initial r10 command makes our total table size 16. The table will be sent to the drive when a
receive command is called:

qgctl recv

The above receive command returns the first command that the drive completed. Note that, in simple queuing
mode, the commands may come back in a different order than they were sent. To get the rest of the commands,
we’ll use a do loop:

do 15 {puts [gctl recv]}

Other Receive Options

Alternate ways to receive commands are through the gctl recv all and gctl recv tag operations.
The gctl recv all operation retrieves all outstanding commands from the device. Here is an example:

do 16 {rl0 [randlbal}
gctl send
gctl recv all

One question that naturally comes up here is “What about the return status for all of these commands”.
It is often useful to know if all of the commands were executed successfully. The first clue is the return of
gctl recv all. If this command returns without error, all commands were completed successfully. If one or
more commands did not complete successfully, an error is returned. In either case, we can get more information
about the commands returned by using the gct1l +info family of commands. As an example, we will issue 4
commands to the device with on of them (the inquiry) a purposeful error. Here is the setup:

HGST Confidential 91

CHAPTER 8. COMMAND QUEUEING

amode set next_tag 0
ing 1

rl10 [randlba]

rl0 [randlbal]

rl0 [randlbal

qgctl send

gctl recv all

Inthe case of gctl recv all, the command should return an error. This is because we did not call inquiry
correctly. To see status on all the commands, we use the gctl table_info command:

> gctl table_info

#1

Tag: 0000

CDB: 12 00 00 FF 01 00

EC: -16 (Check Condition)

Sense: 00 00 00 00 00 00 00 00 OO 0O OO 00 00 00 0O 0O
00 00 00 0O OO 00 00 0O 00 00 OO OO 0O 00 00 00

#2

Tag: 0002

CDB: 28 00 12 34 56 78 00 00 01 0O
EC: 0 (Success)

#3

Tag: 0001

CDB: 28 00 05 7A 52 12 00 00 01 OO
EC: 0 (Success)

#4

Tag: 0003

CDB: 28 00 02 92 01 FD 00 00 01 OO
EC: 0 (Success)

We can also look at a particular index entry:

> gctl idx_info 1

#1

Tag: 0000

CDB: 12 00 00 FF 01 00

EC: -16 (Check Condition)

Sense: 00 00 00 00 00 00O 00 OO 0O 00 OO 00 00 OO 00 0O
00 00 00 00O OO 00 00 00 00 00 OO OO 00O 00 00 00

HGST Confidential 92

CHAPTER 8. COMMAND QUEUEING

> gctl idx_info 1 -1list

{1 0 -16 {12 00 00 ££ 01 00} {OO OO OO 00 00 00 0O 0O
00 00 00 00 OO 00O 00 00}}

> gctl idx_info 3 -list

{310 {28 00 05 7A 52 12 00 00 01 00} {}}
Or by a particular tag value:

> gctl tag_info 1 -1list

{310 {28 00 05 7A 52 12 00 00 01 00} {}}

> gctl tag_info 3

#4

Tag: 0003

CDB: 28 00 02 92 01 FD 00 00 01 OO
EC: 0 (Success)

Note the order of the lists given above is:
{<index> <tag id> <error code> <cdb> <sense data>}

To look at a particular field, use the 1index command to extract the contents. The —1ist option is useful
in this situation. For example:

> lindex [gctl idx_info 1 -1list] 2
-16
> lindex [gctl idx_info 3 -1list] 3

{28 00 05 7A 52 12 00 00 01 00}

8.3 Capturing Data

As commands are executed, their data is sent from the current send buffer to the current receive buffer. In this
situation you can only see the data from the last command received (because the previous command’s data are
overwritten). To avoid this situation, specify different buffers for each command as you send them. Note that you
might need to use the buff set count command to allow for a greater number of buffers. Here is an example
that does 32 random reads and reads status of each command into a separate buffer:

proc read_32rand {

agmode segential

HGST Confidential 93

CHAPTER 8. COMMAND QUEUEING

#allocate 32 buffers
if {[buff get count] < 32} {
buff set count 32

#set up 32 reads
for {set i 0} {$1 < 32} {incr i} {
rl0 [randlba] -ri $i

#send the commands out and get status back
gctl send
qgqctl recv all

#return status and the first data bytes (if command was a success)
#for each command
for {set i 0} {$1i < 32} {incr i} {
puts "[gctl idx_info $i]l\n"
if {[lindex [gctl idx_info $i -1list] 2] == 0} {
#successful command, print first 64 bytes of data
puts "[bd $i 0 64]\n"

8.4 Concurrent Mode

Although stacked mode is useful for achieving a certain queue depth, it does so in a “one shot” type operation.
For cases where we would like to try and maintain a queue depth for an extended period of time, concurrent
mode is a better choice. Concurrent mode differs from stacked mode in that it does not wait for you to issue
a gctl send command before sending commands to the device. Instead commands are sent as soon as you
execute them.

This difference allows you to send a command without building a table and without issuing a gct1l send
call, both of which take a bit of overhead to execute. However, it is now your responsibility (if you want to get
any kind of a queue depth) to ensure that you get the next command sent to the device as rapidly as possible. Note
that all queuing commands except gct1l send can be used in concurrent mode.

Below is a procedure that will perform random reads from a device to a specified queue depth:

proc rand_read_gd {ops depth} {

#if there is an error, turn off queueing
global err
set cdberr {

gmode disable

error Serr

HGST Confidential 94

CHAPTER 8. COMMAND QUEUEING

#set queueing parameters

gmode concurrent

gctl set max_depth $depth
gctl set tag_type simple

gctl set auto_incr 1

#load up the queue with commands
for {set i 0} {$1i < S$depth} {incr i} {
r10 [randlba]

#maintain depth for ops operations
for {set i 0} {$1i < Sops} {incr i} {
#pullor cases a command off
gctl recv
#put another on
rl0 [randlba]

#get the remaining commands
gtcl recv all

#turn off queueing
gmode disable

HGST Confidential

Chapter 9
Using Hardware Data Generation /
Compare

9.1 Introduction

Certain testing systems (e.g. iTech) offer the capability to generate, collect and compare data in hardware.
Consequently, these systems have historically also provided an inefficient path for doing the same in software.
Because of this, Niagara offers the ability to access the hardware data generation / comparison features built into
cards that support the feature. Currently, only the iTech card offers this support.

This chapter provides an overview of different hardware modes supported by Niagara and discusses the per-
formance / flexibility implications of using each feature.

9.2 Understanding iTech Performance

The iTech architecture provides on card memory buffers for data transfers. This provides a number of ad-
vantages, including hardware data generation and comparisons and buffer overrun protection. The buffer overrun
protection prevents the computer from crashing when the drive sends more data to the host than is expected. The
hardware generation and comparison features are provided because it is (significantly) faster to use the iTech
memory directly as opposed to copying the memory from the computer to the iTech card and then executing a
command. For some reason transferring data from main memory to the iTech card is quite slow, making hardware
generation necessary in many applications. Note that with non-iTech cards that DMA from main memory, this is
not an issue and good performance can be achieved without using any hardware generation features.

The default mode of iTech is the (slow) transfer from main memory to card memory (and visa versa) for
each CDB execution. This has the effect of making the iTech card perform more slowly than card types.
When performance is necessary and iTech is the card that is being used, the device set xfer_mode and
device set read_xfer commands can be used to access the hardware generation capabilities.

9.3 Changing The Transfer Mode

The command that facilitates hardware generation is device set xfer_mode. This command has the
following format:

device set xfer_mode <mode>

Available modes are:

HGST Confidential 96

CHAPTER 9. USING HARDWARE DATA GENERATION / COMPARE

’ Mode \ Description
normal Default mode: buffer data is copied from main memory on both
read and write. Both reads and write operate in the slower mode.
hc Hardware Compare: The iTech card’s read and write buffers are
compared on read, does not speed up writes.
random The iTech card randomly generates data for write commands.

Speeds up writes.

random_hc

The iTech card randomly generates data for write commands
and expects this same data during read commands. Speeds
up writes. In most cases you should use random_seed or
random_seed_keyed instead of this mode because they
handle compares more robustly (i.e. random_seed_keyed
will correctly compare any block that has been written, where
random_hc is much more restrictive and will generally only
compare a sequence correctly if it is the same as the sequence
that was written)

random_seed

Works the same as random_hc except that the number genera-
tor is seeded with LBA and with block information. This allows
large transfers (that disconnect and reconnect) to be compared

properly.

random_seed_keyed | Works the same as random_seed with the LBA coded at the
beginning of each block

keyed Uses current buffer contents but overlays LBA keys, does not
speed up writes

keyed_hc Uses current buffer contents but overlays LBA keys, performs
hardware compare on read, does not speed up writes

inc Writes an incrementing pattern to the drive. Speeds up writes

inc_hc Writes an incrementing pattern to the drive. Performs hardware
compare on reads. Speeds up writes

repeat The first write CDB executed after this command will copy data

from the PC’s memory to the iTech card (slow). All subsequent
write calls will then reuse this same data (no buffer xfer) for
improved performance.

repeat_hc

The same as repeat with hardware compare on read.

repeat_read_hc

The fist read CDB executed after this command will copy data
from iTech’s read buffer to its write buffer. Subsequent reads
will compare the new read buffer with the write buffer.

Note that for all of these modes, the data is still copied from the card to main memory on reads (another time
consuming process). To disable this feature, you can use the device set read_xfer command to suppress

this for a performance gain (see the next section for details).

I’ll say it again because its important: Reads will run slow regardless of transfer mode unless you use
device set read_xfer 0

Mode Effect

The hardware generation modes only are used with the following CDBs:

e read6

e readl0

HGST Confidential

CHAPTER 9. USING HARDWARE DATA GENERATION / COMPARE

e write6
o writel0

For all other CDBs, “normal” mode is used.

9.4 Suppressing Card to Memory Transfers

None of the transfer modes above will speed up read operations on an iTech card. The reason is because, by
default, read data is copied from the iTech card to main memory so that you can see the data that was sent. You
can suppress this behavior using device set read_xfer 0. In this mode, reads will be fast at a cost of
seeing the data. At this point, you can use iTech hardware compare features if you need to check data integrity. If
a miscompare occurs, the iTech driver will transfer data into main memory, regardless of the read_xfer setting.
This way you can examine data on a miscompare.

9.5 Returning to a Default State

There are two ways to return to a default state, the first is to call device set xfer_mode normal and
device set read_xfer 1 asappropriate. Anotheristocall init. The init function will return Niagara
to a default state for queuing (off), hardware generation (off) and feedback (default).

9.6 Example

Below are some examples of hardware compare. Note the use of checking for cross driver compatibility. This
code will run correctly whether hardware compare is available or not.If Hardware compare is not available, the
code below uses software compare instead.

proc h_compare {count} {

#do Scount writes followed by Scount reads
#use hardware compare if possible, software otherwise

#create some random channels for data generation
set lba_seed [rand int]
puts "lba_seed: $lba_seed"

set lba_rand [rand open $lba_seed]
set data_rand [rand open]

#******~k*********************************

#try to set hardware mode

#****************k************************

if {[catch { device set xfer_mode random_seed_keyed }]1} {
fsoftware mode
puts "xx+Hardware Mode Not Available, Using Software Modexxx"
set smode 1
} else {
#hardware mode
puts "xxx Using Hardware Compare xx*x*"
set smode 0
#our compare will handle the reads
device set read_xfer 0

HGST Confidential 98

CHAPTER 9. USING HARDWARE DATA GENERATION / COMPARE

#**

#do 1000 writes

#**

puts "Doing S$count Random writes"

for {set i 0} {$i < Scount} {incr i} {
set lba [randlba 1 $lba_rand]
if {$smode} { rand seed $lba S$data_rand; bfr 0 0 512 $data_rand }
wl0 S$lba

#reset our seeds
rand seed $lba_seed $lba_rand

#**

#do 1000 read/compares

#**

puts "Doing S$count Random Read/Compares"
for {set 1 0} {$1 < Scount} {incr 1} {
set lba [randlba 1 $lba_rand]
if {$smode} { rand seed $lba $data_rand; bfr 0 0 512 S$data_rand }
rl0 $lba
if {$smode && [buff compare 0 1 5121} {
error "Data Miscompare"

#**
#clean up
#**
init

rand close $lba_rand

rand close $data_rand

return "Done"

HGST Confidential

Chapter 10

Startup Scripts

Startup scripts are tcl scripts that are executed when Niagara is initially started. These scripts are located in
startup, startup_ata, startup_hdc, startup_scsi, and startup_user directories where Nia-
gara is installed. You can see which scripts are executed by watching Niagara’s console window on startup. To
include your own scripts, simply add them to the startup_user directory.

10.1 Included Startup Scripts

This section contains an overview of the included startup scripts. It is recommended that you also take a look
at the actual code in the . tc1 files to understand exactly what each script is doing...

10.1.1 checksum

The checksum script adds many usefull checksum utilities.
checksum::calc_And_Fill <buff> <offset> ?length?

The calc_And_Fill procedure is used to update the checksum. It takes a buffer, offset and an optional
length.
10.1.2 debug_puts

The script debug_puts.tcl allows for the use of debug puts. Setting the debug level in a namespace using
the set_Debug_Level will determine the number of messages that will appear. The command dput s works
like a normal puts except that you also pass in a debug level that determines when the message should be printed.

dputs <dlevel> <message>
set_Debug_Level <debug_level> ?namespace_name?
get_Debug_Level ?namespace_name?

Here are some examples of dputs.

dputs 1 -color blue "The code is at this point"
dputs 3 "The code has failed at line 273"

10.1.3 do

The do.tcl script adds a single command to TCL called do. The do command provides an easy way to
repeat a command a certain number of times (or forever). An additional bonus to using do is that a Tk button
appears that allows you to cancel a command sequence before it is finished. The general syntax is:

do <iterations> <command>
The <iterations> parameter can be a number or fo for “forever”. Here are some examples of do:

do 5 {puts "hello"}
do 1000 {rdl0 [randlbal}
do fo {rdl0 [randlbal}

HGST Confidential 100

CHAPTER 10. STARTUP SCRIPTS

10.1.4 device_ops
The device_ops script contains the procedure reset_Device_Info which performs a rdcap for SCSI
drives or identify_device for ATA drives, which resets the device info to the correct max LBA or blocksize.

reset_Device_Info

The procedure reset_Device_Info will return zero if successful and one if not.

10.1.5 drive

The drive script implements drive::connect for consistency with serial::connect, agilent::connect, etc...

drive::connect

10.1.6 endian
The endian.tcl script adds a command to TCL called endian_switch. The endian_switch com-

mand can be used to switch a value between big endian and little endian format. The syntax is:

endian_switch <value> <size>
endian <value> <size>

The <value> parameter specifies the value you want to be switched. The <size> parameter determines
the size in bytes of the <value>. Acceptable values for the <size> argument are 2, 3, and 4. This command
can also be run with endian instead of endian_switch.

10.1.7 file

The file script adds the procedure convert_Filename. The procedure convert_Filename will
convert a given file path into a path that TCL can recognize. Backslashes are converted to forward slashes. Spaces
are replaced with " ". The syntax is:

file::convert_Filename <filename> <filter_ spaces>

Where filename is the file path to convert and filter_spaces can be set to zero if you don’t want
spaces to be filtered.

10.1.8 hdc
The hdc script is an attempt to consolidate all HDC identification logic to a single place in the code, simpli-
fying the process of updating the tools when we get new HDCs.

hdc::generation

The hdc: :generation procedure will return the HDC’s chip ID.

10.1.9 identify

The identify.tcl script adds a command to TCL called identify. The identify command calls a
series of inquiry commands in an attempt to identify the drive (Only HGST drives are identified, other return
“unknown”). This script is useful for applications which need to be sensitive to which drive they are testing. The
syntax for the ident ify script is:

identify ?uil_index? ?device_index?

The parameters 2uil_index? and ?device_index? are optional and can be used to specify a specific
device. If these parameters are not specified, the current device is targeted.

HGST Confidential 101

CHAPTER 10. STARTUP SCRIPTS

10.1.10 Mode_Page_Parms

The Mode_Page_Parms.tcl script sets up mode page definitions for various devices. The variables set
up in this file are used by the “ModeMaker” utility to map mode page data to parameters. Edit this file when you
need to add mode page parameters for a device or add new devices.

10.1.11 model_number

The model_number script contains procedures that can be used to obtain model numbers from drives. The
syntax is.

model: :get_Model_Number ?serial_number? ?project_id? ?alsm_code_filename?

All of these parameters are optional but serial_number is the default serial number to use if necessary,
project_id is the project of the selected device, and alsm_code_filename will set the allsym file name
that’s just been created.

10.1.12 serial

Run serial: :connect to point SUIL to the serial driver. Run serial: :connect 3 to point SUIL to
the serial3 driver, so that the UART3 interface can be used.

serial::connect

10.1.13 sns_tools

The sns_tools script contains procedures to allow a user to easily parse data received from the request_sense
command

get_Code ?sns_data?
The get_Code procedure returns a hex byte for the code data.
get_Descriptor_Data <sns_data> <descriptor>

The get_Descriptor_Data procedure searches the sns_data for the given descriptor and returns all data
within that descriptor block except for the descriptor byte and the additional size byte.

get_Information_Bytes ?sns_data?

The get_Information_Bytes procedure returns an LBA in hex of either 4 bytes (fixed) or 8 bytes
(descriptor) depending on the format of the sns_data.

get_Key ?sns_data?
get_Progress_Indication ?sns_data?

The get_Progress_Indication procedure returns in hex the 2 byte data for the progress indication.
Note progress indication data is only valid if the sense key is of value NO_SENSE or NOT_READY.

get_Qual ?sns_data?
get_Sense_Format

The get_Sense_Format procedure will return the current sense format (Descriptor [1] or Fixed [0]).

get_Sector 7?sns_data?
get_Sksv ?sns_data?
get_Uec ?sns_data?
get_Valid 7?sns_data?
set_Sense_Format <d_sense>
set_Data <data>

HGST Confidential 102

CHAPTER 10. STARTUP SCRIPTS

10.1.14 uartmode

The uartmode script adds UART mode manipulation functionality to Niagara.
uartmode

The procedure uartmode can be used to set the UART mode by providing an argument or to get the current
UART mode by not providing any arguments.

HGST Confidential 103

Chapter 11

Expanding The TCL GUI

The scripting power of TCL/TK makes it very easy to be able to dynamically expand your code. Several parts
of the Niagara take advantage of this flexibility and allow you to customize various parts of the GUI This chapter
will explain what you can customize, how the system works in general, and examples of all the changeable parts.
Things that can be altered include:

1. Quick Buttons can be added or taken away from the Quick button list.
2. Action types can be added to the action menu

3. New items can be added to the action listbox

4. Personal preference variables can be added.

5. Some default personal preferences may be changed.

11.1 Working with Quick Buttons

Quick buttons are meant as an easy way to access scripts that you use often. These scripts are located within the
TkGui/buttons directory of your main Niagara path. (example: c:/Niagara/TkGui_user/buttons for most Windows
machines. Buttons may be added or removed by adding them to or removing them from this directory. On the
GUI startup for Niagara the buttons directory is examined and any tcl file in this directory is added to the GUI as
a button. The file name becomes the button name minus the . tcl extension. Anywhere in the name where ppp
occurs is replaced by ... and _ are replace by spaces. For example MyTest .tcl would show up as the button
MyTest, My_Test_ppp.tcl would appear as My Test

You will notice however that simply placing any TCL script in the buttons directory may create the button,
but clicking on the button won’t always execute the script correctly. This is because when the button is pressed a
procedure is called based upon your filename. The extension .tcl is removed and replaced by _init. So when you
click on My Test ... the procedure My_Test_ppp_init is called. Be careful when naming procedures
and global variables in your custom scripts as name pollution can occur. If two functions have the same name the
most current one sourced in is called which could create undesired behavior. A safe way to name procedures is to
prefix it with the name of the file minus the extension. So instead of naming a procedure go, a safer name would
be My_Test_ppp_go.

You may have noticed on the main GUI that when the mouse is placed over some quick buttons a short
description about what the script does occurs in the bottom most information label field. (See figure 11.2 on page
106) You can add this functionality to your script quickly and easily, all you need to do is at the beginning of your
script (outside any functions) create a global variable with your filename (minus the extension) appended with
_ABOUT, and set this to what you want to display. (See figure 11.1)

HGST Confidential 104

CHAPTER 11. EXPANDING THE TCL GUI

elp
Niagara

2([mquiypages JI setspc |
Power Cycle
Power Off
Power On
Start Unit
Stop Unit

Test Reacly

Code for this button:

global My_Test_ppp_ABOUT
set My_Test_ppp_ABOUT "This is an example of using an ABOUT string"
proc My_Test_ppp_init {} {}

Figure 11.1: My Test Example

11.2 The Action List

The action list allows you to easily organize different kinds of tests under broad categories. These categories
appear in the action button list menu (See figure 11.3). When a category is chosen all of the scripts under this
category are placed in the listbox under the action list menu button. To create a new category make a directory
inside the actions directory. When the TCL GUI first starts up the Actions directory will be scanned for other
directories to be added to the action list menu button. In turn these directories are scanned for TCL files which
are placed in the listbox once their category is chosen. If there are no TCL files in a directory then the listbox
will appear blank. Naming conventions follow the format described in the section titled Working with Quick
Buttons. One advantage to using the action list is that a large number of tests can be put under a category which
will be displayed in the scrolling listbox. If these tests were made into Quick Buttons the buttons would appear
small and unreadable as there would be a large number competing for limited space.

11.3 Preference Variables

Niagara allows you to store custom variables when you close the program and bring them up when you start
the program, thanks to the way TCL handles arrays and the way it uses global variables. All of the personal
preference variables are stored in prefs.tcl in the main Niagara directory. On startup, this script is run which sets
the preference variables to the value they had when the program exited.

Preferences are stored in a global array so any script may have access to the preferences. You can define new
prefs variables just by setting them. Make sure that the procedure in which you create a new preference has prefs
globalized (global prefs) otherwise a local version will be created then destroyed once the function terminates. If
you want to find out if a prefs index is already taken you can use the command array names prefs this will
list all indices that are currently defined.

HGST Confidential 105

CHAPTER 11. EXPANDING THE TCL GUI

Niagara

Inquiry Page 3

Power Cycle

Power On
Start Unit
Stop Unit

Figure 11.2: Mouse over the Inquiry button

11.3.1 Special Global Variables

There are two variables that keep track of what drives and what driver you have selected. The variable
guimaker_driverChoice keeps track of what driver you have chosen while guimaker_devicelist has all the de-
vices under this driver that has been chosen. Using the dev and uil flags on most commands you can run a script
against a bunch of chosen drives. The code example below shows a function that runs an inquiry on page 0 of
every selected drive and prints the results to the screen.

proc runInquiry {} {
global guimaker_driverChoice
global guimaker_devicelist

foreach index S$Sguimaker_devicelist {
puts [ing —-dev $index —-uil $guimaker_driverChoice]

HGST Confidential 106

CHAPTER 11. EXPANDING THE TCL GUI

Nic Devels Editic jil=wincil, |=: 1}
@ Ningara Developer Ediion (ul=winci, sil=seria) _ -

File Configuration Preferences Reportforms Help

Niagara

Inquiry

&
ProjectID: Sonoma, Inquiry Page 3

Power Cycle

Pouer Off
Power On
Start Unit
Stop Unit

Download Code..
ETM Decoder

Mode Fields...

5 Prep Drive...
Miagara Window. Updat

Figure 11.3: Display of action list button menu

HGST Confidential 107

Appendix A

TCL Code Examples

In This appendix we will look at several example TCL scripts, starting with simple scripts and extending into
more complex ones.

A.1 Random Read/Write/Verify Application

In This section we start with a simple sequential read application and build it until we have a random read
application with a tk GUI front end.

A.1.1 Basic Sequential Read Loop

We start with a simple sequential loop.

#This Script Performs 10000 Sequential Reads
for {set 1 0} {$1 < 10000} {incr i} {

rl0 $i 1
}

A.1.2 Basic Random Read Loop

Here we use the rand1lba command to read from a random lba instead of sequentially

#This Script Performs 10000 Random Reads

for {set i 0} {$1i < 10000} {incr i} {
rl0 [randlba] 1

}

A.1.3 Creating A Procedure

Next We encapsulate our function into a procedure, we make the number of iterations and block size param-
eters. Note the numblocks parameter used in the randlba function. This prevents the randlba command
from returning an Iba that overlaps the maximum lba (due to the numblocks).

proc rand_read {iterations numblocks} {
#This Script Performs Random Reads
for {set i 0} {$1 < $iterations} {incr i} {
rl0 [randlba $numblocks] S$numblocks
}
}

A.1.4 Adding LBA Range and Boosting Performance

Next we will add an 1barange parameter. If this paraameter is zero, the maximum Iba range will be used.
We will also add status to the script to help show its progress.

proc rand_read {iterations numblocks lbarange} {

#boost performance
feedback push; feedback min

HGST Confidential 108

APPENDIX A. TCL CODE EXAMPLES

#figure out the lba range
if {$lbarange == 0} {
set lbarange [device info maxlbal]

#trim off the block size
set lbarange [expr [device info maxlba] - $lbarange + S$blocksize]

#Start the reads
set 1 0
while {$1 < $iterations} {
#print progress every 1000 iterations
for {set J 0} {$3j < 1000 && $i < S$Siterations} {incr J} {
r10 [randlba $lbarange] S$numblocks

puts "$i Reads Completed"

frestore feedback
feedback pop

o0 ——

$
A.1.5 Adding Writes And Compare

Next we will add a write to the device and a data compare.

proc rand_read_write {iterations numblocks lbarange} {

#boost performance
feedback push; feedback min

#make sure our send and receive buffer are setup right
buff set si 0
buff set ri 1

#count miscompares
set miscompares 0

#figure out the lba range
if {$lbarange == 0} {
set lbarange [device info maxlbal]

#compare size
set compare_size [expr S$Snumblocks * [device info blocksize]]

#trim off the number of blocks
set lbarange [expr [device info maxlba] - $lbarange + S$Snumblocks]

HGST Confidential

109

APPENDIX A. TCL CODE EXAMPLES

#Start the write, read, compare
set 1 0
while {$i1 < $iterations} {
#print progress every 1000 iterations
for {set J 0} {$j < 1000 && $i < S$iterations} {incr J} {
set $lba [randlba]

#fill in some data
buff fill rand 0 O $compare_size

wl0 S$lba $numblocks
r10 $lba S$numblocks

if {[buff compare 0 1 Scompare_size]} {
puts "xxxMiscompare At LBA $1lba at [clock format [clock seconds]]xxx"

incr miscompares

puts "$i Reads Completed"

puts "There Were Smiscompares miscompares during this test"

frestore feedback
feedback pop
}

A.1.6 Adding A TK GUI Front End
A.2 Reading Random Blocks From Every Drive On The Loop

This script shows how to switch devices and read randomly from them. Note how the randlba command is
smart to the maximum Iba of the current device.

proc rand_read_all {S$Siterations} {

#get the number of devices
set maxdev [device get count]

for {set 1 0} {$i < $iterations} {incr i} {

#choose a random device
device set index [expr int (rand() % Smaxdev]

#read a random lba
r1l0 [randlba] 1

#another way to do status updates
if {[expr 1%1000] == 0} {

HGST Confidential 110

APPENDIX A. TCL CODE EXAMPLES

puts "$i Reads Completed"
}

HGST Confidential

111

Appendix B

EC Error Codes

Error Code | C Symbol Description

-1 ERR_UNSUPPORTED_DRIVER Driver is not yet supported

-2 ERR_BAD_DEVICE_KEY Key for the device is wrong

-3 ERR_UNSUPPORTED_FEATURE The feature for that particular driver is unsupported

-4 ERR_BUFFER_OVERRUN Buffer has been over loaded with too much informa-
tion

-5 ERR_BUFFER_UNDERRUN Buffer not filled

-6 ERR_BAD_DEVICE_INDEX Not a valid device index

-7 ERR_DEVICE_INACTIVE Device Inactive

-8 ERR_SEND_FORMAT Send command format error

-9 ERR_SEND General send() failure

-10 ERR_INTERNAL Problems internal to the code

-11 ERR_ARG_COUNT Bad Argument Count

-12 ERR_PARAMETER_SET Parameter Set Failure

-13 ERR_PARAMETER_GET Parameter Get Failure

-14 ERR_TIMEOUT Timeout Error

-15 ERR_UNDEF INED Undefined error

-16 ERR_CHECK_CONDITION Receive Error

-17 ERR_MISCOMPARE Hardware Miscompare

-18 ERR_MULTIPLE Multiple errors (ITech)

-19 ERR_QUEUE_EMPTY Queue empty

-20 ERR_DEVICE_LOCKED Device Locked

-21 ERR_RESERVATION_CONFLICT | Another initiator owns the drive that this initiator is
talking to

-22 ERR_CONDITION_MET Condition Met

-23 ERR_QUEUE_FULL Drive Queue is full

-24 ERR_RESOURCE_BUSY Resource Is Busy

-25 ERR_COMMAND_ TERMINATED Command Was Terminated

-26 ERR_BAD_TARGET No Target Response

-27 ERR_ABORTED Command Aborted

-28 ERR_PARITY Parity Error

-29 ERR_DRIVER_INTERNAL Internal UIL Driver error

-30 ERR_RESET Bus/Loop reset

-31 ERR_INTERRUPT Interrupt error

-32 ERR_SOFT_ERROR Soft Error

-33 ERR_MEDIA Media Error

-34 ERR_HARD_ERROR Hard Error

-35 ERR_DRIVER_SENSE Could Not Retrieve Sense Information

continued on next page

HGST Confidential

112

APPENDIX B. EC ERROR CODES

continued from previous page

Error Code C Symbol Description

-36 ERR_MEMORY_ ALLOC Error Allocating Memory

-37 ERR_NO_SUCH_TAG Queue ID tag not found

-38 ERR_PROTOCOL Communication exists, but it does not follow correct
protocol

-39 ERR_ACA_ACTIVE ACA Active (needs to be cleared)

ERR_CHECK_CONDITION | ERR_ATA_ERR_BIT_SET The ATA error bit is set

-40 ERR_COMMANDS_OUTSTANDING There are outstanding commands in the queue

-41 ERR_APT_REGISTERS_INVALID | Sent an ATA pass-through command, but failed to up-
date the shadow registers on completion

-42 ERR_DEVICE_REMOVED The device was removed

-43 ERR_ATA_INTERNAL Unable to determine if command succeeded due to
ATA internal error

-44 ERR_USER_ABORTED Command Aborted by User

-45 ERR_NO_SUCH_QUEUE User tried to reference a queue that doesn’t exist

ERR_CHECK_CONDITION | ERR_NVME_NONZERO_SF NVMe command completed without a O status field

-46 ERR_WINDOWS_ERROR Windows errors returned by GetLastError()

-47 ERR_XFER_LEN_ERROR Max Xfer len request exceeded

-48 ERR_NO_CMDS_COMPLETE Tried to receive an NVMe command when there were
none avaliable

-49 ERR_TAG_IN_USE Tried to send a command with a tag/cid that was al-
ready in use

-50 IU_NONZERO_STATUS A SOP/PQI command completed with a non-
successful status

-51 ERR_BAD_METADATA A read completed successfully, but with bad protection
information

-52 ERR_UNSUITABLE_SGL A custom SGL couldn’t be used with the current buffer
settings

-53 ERR_TASK_MANAGE_FAILED A Task Management Request failed

-101 ERR_PARSE_ SYNTAX Syntax Error

-102 ERR_PARSE_INTERNAL Internal Parsing Error

-103 ERR_CMD_FORMATION Problems Forming CDB/ATA bytes

-104 ERR_CMD_INTERNAL Internal TCL error

-105 ERR_CMD_UNKNOWN_PARM Unknown Parameter

-106 ERR_UIL_CREATION Problems creating UIL

-107 ERR_OUT_OF_RANGE Parameter out of range

-108 ERR_OUT_OF_MEMORY Out Of Memory

-109 ERR_BUFFER_OVEREFLOW Buffer Overflow

-110 ERR_BAD_UIL Command sent to bad UIL

-111 ERR_FILE_NOT_FOUND File not found

-112 ERR_FILE_IO 10 Error reading/writing file

-113 ERR_BAD_COMMAND_TYPE Command ’packet type’ is unknown

-114 ERR_BUFFER_IN_USE Buffer is in use by a queued command

-115 ERR_COMMAND_NOT_SUPPORTED | The currently selected power toggle device does not

support this command

continued on next page ‘

HGST Confidential

113

APPENDIX B. EC ERROR CODES

continued from previous page

Error Code

C Symbol

Description

-116

ERR_I2C_SLAVE_NOT_FOUND

12C slave was not found

HGST Confidential

114

Appendix C

SCSI Commands

C.1 change_definition

Command Name(s): change_definition, chdef

Description: Changes Drive Definition

Default Parm Order: def_param, vendor_specl, vendor_spec2, vendor_spec3, password,
par_1ls_1lngth
Buffer Data Sent: <par_1s_1lngth> Bytes
Buffer Data Received: None
Parameters:
Name \ Range \ Default Description
—4K5XX (0-3) 0x0 Conversion to 4K or 5xx emulated
-unlock Oorl) 0x0 unlock
-hr Oorl) 0x0 Hard Reset
-vendor_spec?2 (0-0xF) 0x1 Vendor Specific 2
—-def_param (0-0xF) 0x4 Definition Parameter
-vendor_spec3 (0-7) 0x0 Vendor Specific 3
-vendor_specl (0-0x1F) 0x0 Vendor Specific 1
-password (0-0xFFFFFF) | 0x0 Password
-par_ls_1lngth (0-0xFF) 0x0 Parameter List Length in Bytes
—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil 0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-si 0-7) <current> | Temporary send buffer override
—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)
-set_timeout 0-7) 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
C.2 close_zone
Command Name(s): close_zone
Description: Performs one or more reset write pointer operations
HGST Confidential 115

APPENDIX C. SCSI COMMANDS

Default Parm Order: zone_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:
Name \ Range Default Description
—zone_id (0-OxFFFFFFFF | 0x0 The ZONE ID field specifies the
FFFFFFFF) lowest LBA of a write pointer
zone
-all Oorl) 0x0 An ALL bit set to one specifies
that the device server shall
perform a close zone operation
on all zones with a zone
condition of EXPLICIT OPEN or
IMPLICIT OPEN
—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
—cmd_timeout -7 0 Single cmd timeout override
(O=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy 0-1) 0 Don’t actually send the command
C3 e6
Command Name(s): €6, log_dump
Description: Retrieve internal drive logs.
Default Parm Order: offset, alloc, mode

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

HGST Confidential

116

APPENDIX C. SCSI COMMANDS

’ Name Range \ Default Description

-mode (0-0xFF) 0x0 Reserved for future use

-offset (0-OxFFFFFF) | 0x0 Byte offset into log data

-alloc (0-0xFFFFFF) | 0x0 <No Description Available>

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri 0-7 <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy 0-1) 0 Don’t actually send the command

C.4 finish_zone

Command Name(s): finish_zone

Description: Performs one or more reset write pointer operations

Default Parm Order: zone_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

117

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
—zone_id (0-OxFFFFFFFF | 0x0 The ZONE ID field specifies the
FFFFFFFF) lowest LBA of a write pointer

zone

-all Oorl) 0x0 An ALL bit set to one specifies
that the device server shall
perform a finish zone operation
on all zones with a zone
condition of EXPLICIT OPEN,
IMPLICIT OPEN and CLOSED

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.5 format_unit

Command Name(s): forma

t_unit, fmt

Description: Performs a physical format of the drive media.

Default Parm Order: fmt_data,

Buffer Data Sent: <send_size> Bytes

Buffer Data Received: None

Parameters:

cmp_1lst,

def_1ls_frmt

HGST Confidential

118

APPENDIX C. SCSI COMMANDS

C.6

Name \ Range \ Default Description

—-send_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes to send

—fmt_prot_info | (0-3) 0x0 <No Description Available>

-longlist Oorl) 0x0 Parameter list contains a long
parameter.

-fmt_data Oorl) 0x0 FmtData

—cmp_1lst Oorl) 0x0 CmpLst

—def_ls_frmt (0-7) 0x0 Defect List Format

—-vendor_ungqu (0-0xFF) 0x0 Vendor Unique

—intrleve_fac (0-0xFFFF) 0x0 Interleave Factor

-control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-si (0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

inquiry

Command Name(s): inquiry, ing

Description: Performs a device inquiry.

Default Parm Order: pagecode,

Buffer Data Sent: None

alloc

Buffer Data Received: <alloc> Bytes

Parameters:

HGST Confidential

119

APPENDIX C. SCSI COMMANDS

’ Name \ Range Default Description

-cmddt (Oorl) 0x0 Include Command Support Data

—evpd Oorl) 0x0 Enable Vendor Product Data

-pagecode (0-0xFF) 0x0 Page Code

-alloc (0-OxFFFF) | 0x100 Allocation Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout -7 0 Single cmd timeout override
(0O=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.7 iol0

Command Name(s): 1010

Description: Send a Generic 10 byte CDB

Default Parm Order: send_size,

b9

Buffer Data Sent: <send_size> Bytes

recv_size,

Buffer Data Received: <recv_size> Bytes

Parameters:

bo,

bl, b2, b3, b4, b5, be,

b7,

b8,

HGST Confidential

120

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description ‘
—-send_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes to send
-recv_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes returned
-b0 (0-0xFF) 0x0 Byte 0
-bl (0-0xFF) 0x0 Byte 1
-b2 (0-0xFF) 0x0 Byte 2
-b3 (0-0xFF) 0x0 Byte 3
-b4 (0-0xFF) 0x0 Byte 4
-b5 (0-0xFF) 0x0 Byte 5
-b6 (0-OxFF) 0x0 Byte 6
-b7 (0-0xFF) 0x0 Byte 7
-b8 (0-OxFF) 0x0 Byte 8
-b9 (0-0xFF) 0x0 Byte 9
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil (0-7 <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-ri (0-7 <current> | Temporary receive buffer

override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
C8 iol2

Command Name(s): 1012

Description: Send a Generic 12 byte CDB

Default Parm Order: send_size, recv_size, b0, bl, b2, b3, b4, b5, b6, b7, b8,
b9, bl0, bll

Buffer Data Sent: <send_size> Bytes

Buffer Data Received: <recv_size> Bytes

Parameters:
HGST Confidential 121

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description ‘
—-send_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes to send
-recv_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes returned
-b0 (0-0xFF) 0x0 Byte 0
-bl (0-0xFF) 0x0 Byte 1
-b2 (0-0xFF) 0x0 Byte 2
-b3 (0-0xFF) 0x0 Byte 3
-b4 (0-0xFF) 0x0 Byte 4
-b5 (0-0xFF) 0x0 Byte 5
-b6 (0-OxFF) 0x0 Byte 6
-b7 (0-0xFF) 0x0 Byte 7
-b8 (0-OxFF) 0x0 Byte 8
-b9 (0-0xFF) 0x0 Byte 9
-b10 (0-OxFF) 0x0 Byte 10
-bll (0-0xFF) 0x0 Byte 11
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil (0-7 <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-ri 0-7 <current> | Temporary receive buffer

override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout -7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
C9 iol6

Command Name(s): 1016

Description: Send a Generic 16 byte CDB

Default Parm Order: send_size,
bl3,

b9, bl0, bll, bl2z,

bl4, blbs

Buffer Data Sent: <send_size> Bytes

Buffer Data Received: <recv_size> Bytes

Parameters:

recv_size,

bo,

b1,

b2, b3, b4, b5, b6, b7,

b8,

HGST Confidential

122

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description ‘
—-send_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes to send
-recv_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes returned
-b0 (0-0xFF) 0x0 Byte 0
-bl (0-0xFF) 0x0 Byte 1
-b2 (0-0xFF) 0x0 Byte 2
-b3 (0-0xFF) 0x0 Byte 3
-b4 (0-0xFF) 0x0 Byte 4
-b5 (0-0xFF) 0x0 Byte 5
-b6 (0-OxFF) 0x0 Byte 6
-b7 (0-0xFF) 0x0 Byte 7
-b8 (0-OxFF) 0x0 Byte 8
-b9 (0-0xFF) 0x0 Byte 9
-b10 (0-OxFF) 0x0 Byte 10
-bl1 (0-OxFF) 0x0 Byte 11
-bl2 (0-OxFF) 0x0 Byte 12
-b13 (0-OxFF) 0x0 Byte 13
-b1l4 (0-0xFF) 0x0 Byte 14
-b15 (0-OxFF) 0x0 Byte 15
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil 0-7 <current> | Temporary UIL override
—dev 0-7 <current> | Temporary device index override
-ri 0-7 <current> | Temporary receive buffer

override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
C.10 032

Command Name(s): 1032

Description: Send a Generic 32 byte CDB

Default Parm Order: send_size, recv_size, b0, bl, b2, b3, b4, b5, b6, b7, bs,
b9, bl0, bll, bl2, bl3, bl4, bl5, bl6e, bl7, bl8, bl9, b20, b2l, b22, b23, b24,
b25, b26, b27, b28, b29, b30, b3l

Buffer Data Sent: <send_size> Bytes

Buffer Data Received: <recv_size> Bytes

Parameters:

HGST Confidential 123

APPENDIX C. SCSI COMMANDS

’ Name Range \ Default Description

—-send_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes to send

-recv_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes returned

-b0 (0-0xFF) 0x0 Byte 0

-bl (0-0xFF) 0x0 Byte 1

-b2 (0-0xFF) 0x0 Byte 2

-b3 (0-0xFF) 0x0 Byte 3

-b4 (0-0xFF) 0x0 Byte 4

-b5 (0-0xFF) 0x0 Byte 5

-b6 (0-OxFF) 0x0 Byte 6

-b7 (0-0xFF) 0x0 Byte 7

-b8 (0-OxFF) 0x0 Byte 8

-b9 (0-0xFF) 0x0 Byte 9

-b10 (0-OxFF) 0x0 Byte 10

-bl1 (0-OxFF) 0x0 Byte 11

-bl2 (0-OxFF) 0x0 Byte 12

-b13 (0-OxFF) 0x0 Byte 13

-b1l4 (0-0xFF) 0x0 Byte 14

-b15 (0-OxFF) 0x0 Byte 15

-bl6 (0-OxFF) 0x0 Byte 16

-bl7 (0-OxFF) 0x0 Byte 17

-b18 (0-0xFF) 0x0 Byte 18

-b19 (0-OxFF) 0x0 Byte 19

-b20 (0-0xFF) 0x0 Byte 20

-b21 (0-OxFF) 0x0 Byte 21

-b22 (0-0xFF) 0x0 Byte 22

-b23 (0-0xFF) 0x0 Byte 23

-b24 (0-0xFF) 0x0 Byte 24

-b25 (0-OxFF) 0x0 Byte 25

-b26 (0-0xFF) 0x0 Byte 26

-b27 (0-OxFF) 0x0 Byte 27

-b28 (0-OxFF) 0x0 Byte 28

-b29 (0-OxFF) 0x0 Byte 29

-b30 (0-OxFF) 0x0 Byte 30

-b31 (0-OxFF) 0x0 Byte 31

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

-dev (0-7 <current> | Temporary device index override

-ri 0-7 <current> | Temporary receive buffer
override

-si 0-7 <current> | Temporary send buffer override

—-cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential

124

APPENDIX C. SCSI COMMANDS

C.11 io6

Command Name(s): i06

Description: Send a Generic 6 byte CDB
Default Parm Order: send_size, recv_size, b0, bl, b2, b3, b4, bb
Buffer Data Sent: <send_size> Bytes
Buffer Data Received: <recv_size> Bytes
Parameters:
Name | Range Default Description
-send_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes to send
—-recv_size (0-OxFFFFFFFF | 0x0 Number of buffer bytes returned
-b0 (0-0xFF) 0x0 Byte 0
-bl (0-OxFF) 0x0 Byte 1
-b2 (0-0xFF) 0x0 Byte 2
-b3 (0-0xFF) 0x0 Byte 3
-b4 (0-0xFF) 0x0 Byte 4
-b5 (0-OxFF) 0x0 Byte 5
—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil ©0-7 <current> | Temporary UIL override
-dev (0-7 <current> | Temporary device index override
-ri ©0-7 <current> | Temporary receive buffer
override
-si 0-7) <current> | Temporary send buffer override
—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
C.12 log_select

Command Name(s): 1og_s

elect, lgsel

Description: Clears statistical information.

Default Parm Order: pcr,

Buffer Data Sent: <par_1s_1lngth> Bytes

Buffer Data Received: None

Parameters:

pc, spy

par_1ls_lngth

HGST Confidential

125

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-pcr Oorl) 0x0 Parameter Code Reset

-sp Oorl) 0x0 Save Parameters

-pc (0-3) 0x3 Page Control

-page_code (0-0x3F) 0x0 Page Code

—-sub_page_code | (0-0xFF) 0x0 Sub Page Code

-par_ls_1lngth (0-OxFFFF) | 0x0 Parameter List Length in Bytes

—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(O=no override)

-set_timeout 0-7 0 Persistent timeout override
(O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.13 log_sense

Command Name(s): 1og_sense, 1gsns

Description: Retrieves statistical data about the drive

Default Parm Order: page_code,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

alloc, pc, sp,

ppc, par_pointer

HGST Confidential

126

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-ppc Oorl) 0x0 Parameter Pointer Control

-sp Oorl) 0x0 Save Parameters

-pc (0-3) 0x1 Page Control

-page_code (0-0x3F) 0x0 Page Code

—-sub_page_code | (0-0xFF) 0x0 Sub Page Code; must be 0 in
legacy products

-par_pointer (0-0xFFFF) | 0x0 Parameter Pointer

-alloc (0-OxFFFF) | OxE Allocation Length in Bytes

—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri ©0-7 <current> | Temporary receive buffer
override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.14 mode_select10

Command Name(s): mode_select10,mds110

Description: Specifies device parameters to the target.

Default Parm Order: par_1s_1ngth,

Buffer Data Sent: <par_1s_1lngth> Bytes

Buffer Data Received: None

Parameters:

sp

HGST Confidential

127

APPENDIX C. SCSI COMMANDS

’ Name \ Range Default \ Description

-pf Oorl) 0x1 Page Format

-sp Oorl) 0x0 Save Pages

-par_1ls_lngth (0-OxFFFF) | 0x20 Parameter List Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si ©0-7 <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(O=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.15 mode_select6

Command Name(s): mode_select6,mds16

Description: Specifies device parameters to the target.

Default Parm Order: par_1s_1ngth,

sp

Buffer Data Sent: <par_1s_1lngth> Bytes

Buffer Data Received: None

Parameters:

Name | Range Default Description

-pf ©orl) 0x1 Page Format

-sp Oorl) 0x0 Save Pages

-par_ls_lngth (0-0xFF) | 0x1C Parameter List Length in Bytes

—-control_byte (0-0xFF) | 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(O=no override)

—dummy 0-1) 0 Don’t actually send the command

C.16 mode_sensel(

Command Name(s): mode_sensel0,mdsnl0

HGST Confidential

128

APPENDIX C. SCSI COMMANDS

Description: Reports various device parameters.

Default Parm Order: page_code,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

alloc

Parameters:

Name Range \ Default Description

-longlba Oorl) 0x0 If 1, parameter data can be
returned with the LONGLBA bit
on

-dbd Oorl) 0x0 Disable Block Descriptor

-pcf (0-3) 0x0 Page Control Field

-page_code (0-0x3F) 0x3F Page Code

—-sub_page_code | (0-0xFF) 0x0 Sub Page Code

-alloc (0-OxFFFF) | OxFF Allocation Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-ri ©0-7 <current> | Temporary receive buffer
override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.17 mode_sense6

Command Name(s): mode_sense6,mdsné

Description: Reports various device parameters.

Default Parm Order: page_code,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

alloc

HGST Confidential

129

APPENDIX C. SCSI COMMANDS

’ Name \ Range Default Description

-dbd Oorl) 0x0 Disable Block Descriptor

-pcf (0-3) 0x0 Page Control Field

-page_code (0-0x3F) | 0x3F Page Code

-sub_page_code | (0-0xFF) | 0x0 Sub Page Code

-alloc (0-0xFF) | OxFF Allocation Length in Bytes

-control_byte (0-OxFF) | 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri 0-7 <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(O=no override)

-set_timeout 0-7 0 Persistent timeout override
(O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.18 open_zone

Command Name(s): open_zone

Description: Performs one or more reset write pointer operations

Default Parm Order: zone_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

130

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
—zone_id (0-OxFFFFFFFF | 0x0 The ZONE ID field specifies the
FFFFFFFF) lowest LBA of a write pointer

zone

-all Oorl) 0x0 An ALL bit set to one specifies
that the device server shall
perform a zone management
operation and then an open zone
operation on all CLOSED zones

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

-dev (0-7 <current> | Temporary device index override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.19 persistent_reserve_in

Command Name(s): persistent_reserve_in,pri

Description: Obtains info about persistent reservations.

Default Parm Order: ser_action,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

alloc

Parameters:

Name \ Range Default Description

—-ser_action (0-0x1F) 0x0 Service Action

-alloc (0-OxFFFF) | 0x8 Allocation Length in Bytes

—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential

131

APPENDIX C. SCSI COMMANDS

C.20 persistent_reserve_out

Command Name(s): persistent_reserve_out, pro

Description: Reserves drive for a particular initiator.

Default Parm Order: ser_action,

Buffer Data Sent: <par_1s_1lngth> Bytes

Buffer Data Received: None

type,

par_ls_1lngth

Parameters:

Name | Range Default Description

-ser_action (0-0x1F) 0x0 Service Action

—-scope (0-0xF) 0x0 Scope Code

-type (0-0xF) 0x0 Type Code

-par_1ls_lngth (0-0xFFFF) | 0x18 Parameter List Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—-cmd_timeout (0-7) 0 Single cmd timeout override
(O=no override)

—set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.21 prefetch

Command Name(s): prefetch, pref

Description: Requests that the drive transfer data to the cache.

Default Parm Order: 1ba,
Buffer Data Sent: None
Buffer Data Received: None

Parameters:

trans_length

HGST Confidential

132

APPENDIX C. SCSI COMMANDS

Name \ Range \ Default \ Description

—immed Oorl) 0x0 Immediate bit

-rel_adr Oorl) 0x0 Relative Block Address

-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

—trans_length (0-OxFFFF) 0x1 Transfer Length in Blocks

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

—cmd_timeout ©0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.22 prefetchl6

Buffer Data Sent: None

Default Parm Order: 1ba,

Buffer Data Received: None

Command Name(s): prefetchl6,prefl6

trans_len

Description: Requests that the drive transfer data to the cache.

Parameters:

Name \ Range \ Default Description

—immed Qorl) 0x0 Immediate bit

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

—-trans_len (0-OxFFFFFFFF | 0x0 Transfer Length in Blocks

—grp_num (0-Ox1F) 0x0 Grp which attributes are
collected

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

-dev 0-7 <current> | Temporary device index override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential

133

APPENDIX C. SCSI COMMANDS

C.23 readl0

Command Name(s): readl10,r10, rd10

Description: Reads blocks of memory from the disk.

Default Parm Order: 1ba,
Buffer Data Sent: None

Buffer Data Received: <t ranslen> Blocks

translen, rdprotect

Parameters:

Name Range Default Description

-rdprotect (0-7) 0x0 EndToEnd RdProtect field

—dpo Oorl) 0x0 Disable Page Out

-fua Oorl) 0x0 Force Unit Access

-reladr Oorl) 0x0 Relative Block Address

-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

-translen (0-0xFFFF) 0x1 Transfer Length in Blocks

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7 <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout (0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.24 readl12

Command Name(s): readl2,rl12, rdl12

Description: Reads blocks of memory from the disk.

Default Parm Order: 1ba,
Buffer Data Sent: None

Buffer Data Received: <t ranslen> Blocks

Parameters:

translen, rdprotect

HGST Confidential

134

APPENDIX C. SCSI COMMANDS

’ Name Range \ Default Description

-rdprotect (0-7) 0x0 EndToEnd RdProtect field

—dpo Oorl) 0x0 Disable Page Out

—-fua Oorl) 0x0 Force Unit Access

—-fua_nv Oorl) 0x0 FUA Non-Volatile Cache

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

—translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.25 readl6

Command Name(s): readl6,r16, rdl6

Description: Reads blocks of memory from the disk.

Default Parm Order: 1ba,
Buffer Data Sent: None

Buffer Data Received: <t ranslen> Blocks

Parameters:

translen,

rdprotect

HGST Confidential

135

APPENDIX C. SCSI COMMANDS

C.26

’ Name \ Range \ Default Description

-rdprotect (0-7) 0x0 EndToEnd RdProtect field

—dpo Oorl) 0x0 Disable Page Out

—-fua Oorl) 0x0 Force Unit Access

—fua_nv Oorl) 0x0 Force Unit Access Non-Volatile
Cache

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

—translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—group_num (0-0xF) 0x0 Group Number

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-ri (0-7 <current> | Temporary receive buffer
override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

read32

Command Name(s): read32, r32, rd32

Description: Reads blocks of memory from the disk.

Default Parm Order: 1ba,

Buffer Data Sent: None

Buffer Data Received: <t ranslen> Blocks

Parameters:

translen

HGST Confidential

136

APPENDIX C. SCSI COMMANDS

C.27

’ Name \ Range \ Default \ Description

-control_byte (0-0xFF) 0x0 VU | Reserved | FLAG | LINK

—-add_cdb_len (0-OxFF) 0x18 Additional CDB Length

-serv_action (0-0xFFFF) 0x9 Service Action

-rdprotect (0-7) 0x0 EndToEnd RdProtect field

—dpo Oorl) 0x0 Disable Page Out

-fua Oorl) 0x0 Force Unit Access

—-fua_nv Qorl) 0x0 Force Unit Access Non-Volatile
Cache

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

—-1lbr_tag_msb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag MSB

—-1lbr_tag_1lsb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag LSB

-1lba_tag (0-OxFFFF) 0x0 Logical Block Application Tag

-1lba_tag_mask (0-0xFFFF) 0x0 Logical Block Application Tag
Mask

-translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-ri 0-7 <current> | Temporary receive buffer
override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

read6

Command Name(s): read6, r6, rdé

Description: Reads blocks of memory from the disk.

Default Parm Order: 1ba,

Buffer Data Sent: None

Buffer Data Received: <t ranslen> Blocks

Parameters:

translen

HGST Confidential

137

APPENDIX C. SCSI COMMANDS

C.28

Name \ Range \ Default Description

-lba (0-0xFFFF) | 0x0 Logical Block Address

-translen (0-OxFF) Ox1 Transfer Length in Blocks

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout -7 0 Single cmd timeout override
(O=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)

—dummy (0-1) 0 Don’t actually send the command

read_buffer

Command Name(s): read_buffer, rdbuf

Description: Diagnostic function for memory test.

Default Parm Order: buff_offset,

Buffer Data Sent: None

alloc,

Buffer Data Received: <recv_bytes> Bytes

Parameters:

buffer_id, mode

HGST Confidential

138

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-block_mode Oorl) 0x0 When enabled, buff offset &
alloc are in block units

-mode (0-0x1F) 0x0 Mode

-buffer_id (0-0xFF) 0x0 Buffer ID

-buff_offset (0-0xFFFFFF) | 0x0 Buffer Offset

—alloc (0-OxFFFFFF) | 0x20 Allocation Length in Bytes

—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil ©0-7 <current> | Temporary UIL override

—dev ©0-7) <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

-reserved_area | (Oorl) 0 1 if the command is issued to a

reserved area, O if the command

is issued to a customer area

C.29

read_buffer32

Command Name(s): read_buffer32, rdbuf32

Description: Diagnostic function for memory test.

Default Parm Order: buff_offset,

Buffer Data Sent: None

alloc,

Buffer Data Received: <recv_bytes> Bytes

Parameters:

buffer_id, mode

HGST Confidential

139

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description
-control_byte (0-0xFF) 0x0 NACA | FLAG | LINK
-block_mode Oorl) 0x0 When enabled, buff_offset &

alloc are in block units
-mode (0-0x1F) 0x0 Mode
—add_cdb_len (0-0xFF) 0x18 <No Description Available>
-service_actio | n (0-OxFFFF) O0xFF3C <No Description Available>
-buffer_id (0-OxFFFFFFFF | 0x0 Buffer ID
-buff_offset (0-OxFFFFFFFF | 0x0 Buffer Offset
FFFFFFFF)
—alloc (0-OxFFFFFFFF | 0x20 Allocation Length in Bytes
FFFFFFFF)
—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7 <current> | Temporary UIL override
-dev (0-7 <current> | Temporary device index override
-ri 0-7 <current> | Temporary receive buffer
override
—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

C.30

read_capacity

Command Name(s): read_capacity, rdcap

Description: Returns info regarding the capacity of the drive.

Default Parm Order: 1ba,

Buffer Data Sent: None

pmi

Buffer Data Received: 8 Bytes

Parameters:

HGST Confidential

140

APPENDIX C. SCSI COMMANDS

C.31

Name \ Range \ Default Description

-rel_adr Oorl) 0x0 Relative Address

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

-pmi Oorl) 0x0 Partial Medium Indicator

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7 <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

read_capacityl6

Command Name(s): read_capacityl6, rdcapl6

Description: Returns info regarding the capacity of the drive.

Default Parm Order: 1ba,

Buffer Data Sent: None

pmi

Buffer Data Received: 32 Bytes

Parameters:

Name | Range | Default Description

—-servact (0-0xFF) 0x10 <No Description Available>

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

-len (0-OxFFFFFFFF | 0x20 <No Description Available>

—pmi Oorl) 0x0 Partial Medium Indicator

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

-dev 0-7) <current> | Temporary device index override

-ri 0-7 <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential

141

APPENDIX C. SCSI COMMANDS

C.32

Command Name(s): read_defect_datall, rdmapl0

read_defect_datal(

Description: Requests that the target transfer medium defect data.

Default Parm Order: def_1s_frmt,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

alloc

Parameters:

Name | Range Default Description

-p_list ©orl) 0x1 Primary Defect List

-g_list Oorl) 0x0 The Grown Defect List

—def_1ls_frmt 0-7) 0x5 Defect List Format

-alloc (0-OxFFFF) | 0x4 Allocation Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(O=no override)

-set_timeout 0-7 0 Persistent timeout override
(O=no override)

—dummy 0-1) 0 Don’t actually send the command

C.33

read_defect_datal2

Command Name(s): read_defect_datal2, rddl2

Description: Requests that the target transfer medium defect data.

Default Parm Order: def_1s_frmt,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

alloc

HGST Confidential

142

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-p_list Oorl) 0x1 Primary Defect List

-g_list Oorl) 0x0 The Grown Defect List

—def_1ls_frmt (0-7) 0x5 Defect List Format

—addr_desc_idx | (0-OxFFFFFFFF | 0x0 Address Descriptor Index

-alloc (0-OxFFFFFFFF | 0x8 Allocation Length in Bytes

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—-cmd_timeout (0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.34 read_long

Command Name(s): read_

long, rdlong

Description: Drive transfers one block of data to initiator.

Default Parm Order: 1ba,

Buffer Data Sent: None

trans_length

Buffer Data Received: <trans_length> Bytes

Parameters:

HGST Confidential

143

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-pblock Oorl) 0x0 Return entire phy block w/ the
logical block

-cort Oorl) 0x0 Corrected Bit

-rel_adr Oorl) 0x0 Relative Block Address

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

—trans_length (0-OxFFFF) 0x228 Transfer Length in Bytes

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.35 read_longl6

Command Name(s): read_longl6, rdlonglé

Description: Drive transfers one block of data to intiator.

Default Parm Order: 1ba,

Buffer Data Sent: None

Buffer Data Received: <t rans_len> Bytes

Parameters:

trans_len

HGST Confidential

144

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description
-serv_act (0-0x1F) 0x11 <No Description Available>
-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address
FFFFFFFF)

—trans_len (0-OxFFFF) 0x0 Transfer Length in Bytes

-pblock Oorl) 0x0 Return entire phy block w/ the
logical block

—-cort Oorl) 0x0 Corrected Bit

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri (0-7 <current> | Temporary receive buffer
override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.36

reassign_blocks

Command Name(s): reassign_blocks, reas

Description: Reassigns specified logical blocks.

Default Parm Order: <No Default Parms>

Buffer Data Sent: <send_length> Bytes

Buffer Data Received: None

Parameters:

HGST Confidential

145

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-send_length (0-OxFFFFFFFF | 0x0 <No Description Available>

-long_lba Oorl) 0x0 Turn on to use 8 byte LBAs

-long_list Oorl) 0x0 Turn on to increase the defect
list length

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si ©0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.37

receive_diagnostic_results

Command Name(s): receive_diagnostic_results, rcvdg

Description: Sends analysis data to initiator.

Default Parm Order: page_code, par_ls_lngth

Buffer Data Sent: None

Buffer Data Received: <par_1s_lngth> Bytes

Parameters:

Name | Range Default | Description

-pcv Oorl) 0x1 Page Code Valid

-page_code (0-0xFF) 0x0 Page Code

-par_1ls_1lngth (0-OxFFFF) | 0x200 Parameter List Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential

146

APPENDIX C. SCSI COMMANDS

C.38 releasel(

Command Name(s): releasel0, rell0

Description: Releases a previously reserved LUN.

Default Parm Order: reserv_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

Name | Range Default Description

-thirdpty Oorl) 0x0 3rdPty Bit

-ext Oorl) 0x0 Extent Bit

-td_pty_dv_id (0-0xFF) | 0x0 Third Party Device ID

—-control_byte (0-0xFF) | 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil ©0-7) <current> | Temporary UIL override

—dev ©0-7) <current> | Temporary device index override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(O=no override)

—dummy 0-1) 0 Don’t actually send the command

C.39 release6

Command Name(s): release6,rel6

Description: Releases a previously reserved LUN.

Default Parm Order: reserv_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

147

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-thirdpty Oorl) 0x0 3rdPty Bit

-third_pty_id 0-7) 0x0 3rd Party ID

-ext Oorl) 0x0 Extent Bit

-control_byte (0-OxFF) | 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7 0 Persistent timeout override
(O=no override)

—dummy 0-1) 0 Don’t actually send the command

C.40 report_lun

Command Name(s): report_1lun, rlun

Description: Returns the known Logical Unit Numbers to the initiator.

Default Parm Order: alloc

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:
| Name | Range | Default | Description

—alloc (0-OxFFFFFFFF | 0x10 Allocation Length in Bytes

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-ri 0-7 <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C41

report_supported_opcodes

Command Name(s): report_supported_opcodes, repsupops

Description: Returns a list of all opcodes and service actions.

HGST Confidential

148

APPENDIX C. SCSI COMMANDS

C.42

Default Parm Order: rep_options,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

req_opcode,

reg_serv_act,

alloc

Parameters:

Name Range \ Default Description

-rctd Oorl) 0x0 Return timeout descriptor bit

-rep_options ©-7) 0x0 Reporting options.

-req_opcode (0-0xFF) 0x0 Requested opcode.

-req_serv_act (0-OxFFFF) 0x0 Requested service action

-alloc (0-OxFFFFFFFF | 0x600 Allocation Length in bytes

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7 <current> | Temporary UIL override

-dev 0-7 <current> | Temporary device index override

-ri 0-7 <current> | Temporary receive buffer
override

—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

report_supported_tmf

Command Name(s): report_supported_tmf, repsuptmf

Description: Returns information on supported TMFs.

Default Parm Order: alloc

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

HGST Confidential

149

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-repd Oorl) 0x0 Return extended parameter data
bit.

-alloc (0-OxFFFFFFFF | 0x16 Allocation Length in bytes

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7 <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout (0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.43 report_zones

Command Name(s): report_zones

Description: Return the zone structure of the zoned block device.

Default Parm Order: z_start_1lba, alloc,

Buffer Data Sent: None
Buffer Data Received: <alloc> Bytes

Parameters:

reporting_opt

HGST Confidential

150

APPENDIX C. SCSI COMMANDS

C.44

Command Name(s): report_zones_old

’ Name \ Range \ Default \ Description
-z_start_lba (0-OxFFFFFFFF | 0x0 The ZONE START LBA field
FFFFFFFF) specifies the starting LBA of
the first zone to be reported
-alloc (0-OxFFFFFFFF | 0x1 Allocation Length in Bytes
—-reporting_opt | (0-0x3F) 0x0 The REPORTING OPTIONS field
specifies the information to be
returned in the parameter data.
-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil ©0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-ri 0-7) <current> | Temporary receive buffer
override
—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

report_zones_old

Description: Return the zone structure of the zoned block device.

Default Parm Order: z_start_1lba,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

alloc,

reporting_opt

HGST Confidential

151

APPENDIX C. SCSI COMMANDS

C.45

’ Name \ Range \ Default \ Description
-z_start_lba (0-OxFFFFFFFF | 0x0 The ZONE START LBA field
FFFFFFFF) specifies the starting LBA of
the first zone to be reported
-alloc (0-OxFFFFFFFF | 0x1 Allocation Length in Bytes
-reporting_opt | (0-0xF) 0x0 The REPORTING OPTIONS field
specifies the information to be
returned in the parameter data.
-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil ©0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-ri 0-7) <current> | Temporary receive buffer
override
—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

request_sense

Command Name(s): request_sense, sns

Description: Returns the target’s sense data to the initiator.

Default Parm Order: alloc

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:
Name | Range | Default Description
—-desc ©orl) 0x0 Specify the sense data format
-alloc (0-0xFF) | 0xFC Allocation Length in Bytes
—-control_byte (0-OxFF) | 0x0 NACA | FLAG | LINK
-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil 0-7) <current> | Temporary UIL override
—dev 0-7 <current> | Temporary device index override
-ri 0-7) <current> | Temporary receive buffer
override
—cmd_timeout -7 0 Single cmd timeout override
(O=no override)
-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)
—dummy (0-1) 0 Don’t actually send the command
HGST Confidential 152

APPENDIX C. SCSI COMMANDS

C.46 reservel(

Command Name(s): reservel0, resl10

Description: Used to reserve a LUN for an initiator.

Default Parm Order: reserv_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

Name Range Default Description

-thirdpty ©orl) 0x0 3rdPty

-ext Oorl) 0x0 Extent Bit

-td_pty_dv_id (0-0xFF) 0x0 3rd Party Device ID

-ext_1s_lngth (0-0xFFFF) | 0x0 Extent List Length

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

—-cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7) 0 Persistent timeout override
(O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.47 reserve6

Command Name(s): reserve6, res6

Description: Used to reserve a LUN for an initiator.

Default Parm Order: reserv_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

153

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-thirdpty Oorl) 0x0 3rdPty

-third_pty_id 0-7) 0x0 3rd Party ID

-ext Oorl) 0x0 Extent Bit

—-ext_1ls_1lngth (0-0xFFFF) | 0x0 Extent List Length

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

—cmd_timeout -7 0 Single cmd timeout override
(O=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)

—dummy (0-1) 0 Don’t actually send the command

CA48

reset_write_pointer

Command Name(s): reset_write_pointer

Description: Performs one or more reset write pointer operations

Default Parm Order: zone_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:
Name \ Range \ Default Description
-zone_id (0-OxFFFFFFFF | 0x0 The ZONE ID field specifies the
FFFFFFFF) zone start LBA

-reset_all Oorl) 0x0 If RESET ALL bit set to one,
perform a reset write pointer
operation on all OPEN zones and
FULL zones

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

-dev 0-7 <current> | Temporary device index override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential 154

APPENDIX C. SCSI COMMANDS

C.49 reset_write_pointer_old

Command Name(s): reset_write_pointer_old

Description: Performs one or more reset write pointer operations

Default Parm Order: zone_id

Buffer Data Sent: None

Buffer Data Received: None

Parameters:
Name | Range | Default Description
—zone_1id (0-OxFFFFFFFF | 0x0 The ZONE ID field specifies the
FFFFFFFF) zone start LBA

-reset_all Oorl) 0x0 If RESET ALL bit set to one,
perform a reset write pointer
operation on all OPEN zones and
FULL zones

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7 <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.50 rezero_ unit

Command Name(s): rezero_unit, rezero

Description: Requests that the target seek to LBA 0.

Default Parm Order: <No Default Parms>

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

155

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

—-control_byte (0-0xFF) | 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil ©0-7) <current> | Temporary UIL override

—dev ©0-7) <current> | Temporary device index override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.51 sanitize

Command Name(s): sanitize

Description: Performs a sanitize operation.

Default Parm Order: service_action,

par_ls_1lngth

Buffer Data Sent: <par_1s_1lngth> Bytes

Buffer Data Received: None

Parameters:
’ Name \ Range Default \ Description

—immed Oorl) 0x1 Immediately Return Status

—ause Oorl) 0x0 Allow Unrestricted Sanitize Exit

-service_actio | n(0-0x1F) 0x0 0x01: Overwrite. 0x02: Block
Erase. 0x03: Cryptographic
Erase. All Others: reserve

-par_ls_1lngth (0-OxFFFF) | 0x0 Parameter List Length in Bytes

—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(O=no override)

-set_timeout 0-7 0 Persistent timeout override
(O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.52

security_protocol_in_block

Command Name(s): security_protocol_in_block,sec_in_blk

Description: Retrieve security protocol information from logical unit.

HGST Confidential

156

APPENDIX C. SCSI COMMANDS

Default Parm Order: security_protocol, protocol_specific,

Buffer Data Sent: None

Buffer Data Received: <alloc> Blocks

alloc,

Parameters:
Name \ Range \ Default Description
—-security_prot | ocol (0-OxFF) 0x0 0: security protocol
information. 1-6: defined by
TCG.
—-protocol_spec | ific (0-OxFFFF) | 0x0 Depends on the security_protocol
field
-alloc (0-OxFFFFFFFF | 0x0 Receive buffer allocation size
in 512 byte blocks
—control_byte (0-OxFF) 0x0 <No Description Available>
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7 <current> | Temporary UIL override
—dev ©0-7 <current> | Temporary device index override
-ri 0-7) <current> | Temporary receive buffer
override
—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
—-set_timeout (0-7) 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

C.53

security_protocol_in_byte

Command Name(s): security_protocol_in_byte, sec_in_byte

Description: Retrieve security protocol information from logical unit.

Default Parm Order: security_protocol, protocol_specific,

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

alloc,

control_byte

control_byte

HGST Confidential

157

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
-security_prot | ocol (0-OxFF) 0x0 0: security protocol
information. 1-6: defined by
TCG.
-protocol_spec | ific (0-OxFFFF) | 0x0 Depends on the security_protocol
field
-alloc (0-OxFFFFFFFF | 0x0 Receive buffer allocation size
in bytes
—-control_byte (0-OxFF) 0x0 <No Description Available>
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-ri (0-7 <current> | Temporary receive buffer
override
—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

C.54

security_protocol_out_block

Command Name(s): security_protocol_out_block, sec_out_blk

Description: Send security protocol information to logical unit.

Default Parm Order: security_protocol, protocol_specific,

Buffer Data Sent: <alloc> Blocks

Buffer Data Received: None

Parameters:

alloc,

control_byte

HGST Confidential

158

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
-security_prot | ocol (0-OxFF) 0x0 0: security protocol
information. 1-6: defined by
TCG.
-protocol_spec | ific (0-OxFFFF) | 0x0 Depends on the security_protocol
field
-alloc (0-OxFFFFFFFF | 0x0 Amount of data to send from send
buffer in 512 byte blocks
—control_byte (0-OxFF) 0x0 <No Description Available>
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil ©0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout -7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

C.55

security_protocol_out_byte

Command Name(s): security_protocol_out_byte, sec_out_byte

Description: Send security protocol information to logical unit.

Default Parm Order: security_protocol,

Buffer Data Sent: <alloc> Bytes

Buffer Data Received: None

Parameters:

protocol_specific,

alloc,

control_byte

HGST Confidential

159

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
-security_prot | ocol (0-OxFF) 0x0 0: security protocol
information. 1-6: defined by
TCG.
-protocol_spec | ific (0-OxFFFF) | 0x0 Depends on the security_protocol
field
-alloc (0-OxFFFFFFFF | 0x0 Amount of data to send from send
buffer in bytes
—control_byte (0-OxFF) 0x0 <No Description Available>
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil ©0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout -7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
C.56 seekl0

Command Name(s): seekl

0,sk1l0

Description: Requests that the drive seek to the specified LBA.

Default Parm Order: 1ba

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

Name | Range | Default | Description

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.57 seekl10_64lba

Command Name(s): seek10_641ba, sk10_64

HGST Confidential

160

APPENDIX C. SCSI COMMANDS

Description: Requests that the drive seek to the specified LBA.

Default Parm Order: 1ba

Buffer Data Sent: None

Buffer Data Received: None

Parameters:
Name \ Range \ Default \ Description
-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address
FFFFFFFF)

-control_byte (0-0xFF) 0x80 VU | Reserved | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.58 seek6

Command Name(s): seek6, sk6

Description: Requests that the drive seek to the specified LBA.

Default Parm Order: 1ba

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

Name \ Range \ Default \ Description ‘
-1lba (0-OxFFFF) | 0x0 Logical Block Address
—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil 0-7) <current> | Temporary UIL override
—dev 0-7 <current> | Temporary device index override
—cmd_timeout -7 0 Single cmd timeout override

(0=no override)
—-set_timeout 0-7) 0 Persistent timeout override

(0=no override)
—dummy (0-1) 0 Don’t actually send the command

HGST Confidential 161

APPENDIX C. SCSI COMMANDS

C.59 send_diagnostic

Command Name(s): send_diagnostic, sndd

Description: Requests the drive perform a diagnostic.

Default Parm Order: funct_code,
Buffer Data Sent: <par_1s_1lngth> Bytes

Buffer Data Received: None

par_ls_lngth

Parameters:

Name | Range Default Description

—funct_code (0-7) 0x1 Function Code

-pf Oorl) 0x1 Page Format

-slftst Oorl) 0x1 Self Test

—-dev0fl ©orl) 0x0 IGNORED

-unt0fl ©orl) 0x0 IGNORED

-par_1ls_lngth (0-OxFFFF) | 0x0 Parameter List Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.60 start_stop_unit

Command Name(s): start_stop_unit, ssu,unit

Description: Starts or stops unit.

Default Parm Order: start, immed

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

162

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
—immed Oorl) 0x0 Immediately Return Status
-pwr_cond_mod (0-0xF) 0x0 Places the logical unit into a

power condition or adjusts a
timer. Implemented in Sonom
-pwr_cond (0-0xF) 0x0 Places the logical unit into a
power condition or adjusts a
timer. Implemented in Sonom

-start (Oorl) 0x0 Start/Stop Spindle
—-control_byte (0-OxFF) | 0x0 NACA | FLAG | LINK
-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil 0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
—cmd_timeout 0-7) 0 Single cmd timeout override
(0O=no override)
—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)
—dummy 0-1) 0 Don’t actually send the command

C.61 synchronize_cache

Command Name(s): synchronize_cache, sync

Description: Ensures that logical blocks in the cache have their most recent data value recorded on the media
Default Parm Order: 1ba, num_blocks

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

Name \ Range Default Description

—immed Oorl) 0x0 Immediate Bit

-rel_adr Oorl) 0x0 Relative Address

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

—num_blocks (0-OxFFFF) 0x1 Number of Blocks

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

-dev (0-7 <current> | Temporary device index override

—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential 163

APPENDIX C. SCSI COMMANDS

C.62

synchronize_cachel6

Command Name(s): synchronize_cachel6, synclé

Description: Ensures that logical blocks in the cache have their most recent data value recorded on the media

Default Parm Order: 1ba,

Buffer Data Sent: None

Buffer Data Received: None

num_blocks

Parameters:

Name | Range Default Description

—-sync_nv Oorl) 0x0 Synch volatile and non-volatile

—immed Oorl) 0x0 Immediate Bit

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

-num_blocks (0-OxFFFFFFFF | 0x0 Number of Blocks

—grp_num (0-0x1F) 0x0 Grp which attributes are
collected

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

—cmd_timeout ©0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.63

test_unit_ready

Command Name(s): test_unit_ready, tstrdy, tstr

Description: Tests to see if the device is ready.

Default Parm Order: <No Default Parms>

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

164

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

—-control_byte (0-0xFF) | 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil ©0-7) <current> | Temporary UIL override

—dev ©0-7) <current> | Temporary device index override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.64 unmap

Command Name(s): unmap, um

Description: Invalidates user data on the disk.

Default Parm Order: 1istlen

Buffer Data Sent: <11istlen> Bytes

Buffer Data Received: None

Parameters:

Name \ Range Default \ Description

—anchor Oorl) 0x0 Set to 1 to anchor an LBA

—group_num (0-0x1F) 0x0 <No Description Available>

-listlen (0-OxFFFF) | 0x18 List Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(0O=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.65 verify

Command Name(s): verify, ver

Description: Asks drive to verify data written on media. If bytechk=0, trans_length is # of blocks to verify
internally. If bytechk=1, trans_length is also blocks being sent to drive, so send_length must be made the same as
trans_length.

HGST Confidential 165

APPENDIX C. SCSI COMMANDS

Default Parm Order: 1ba, trans_length, vrprotect

Buffer Data Sent: Buf fer Data

Buffer Data Received:

Parameters:
Name \ Range Default \ Description
—dpo Oorl) 0x0 Disable Page Out
-bytechk (0-3) 0x0 Byte Check
-rel_adr Oorl) 0x0 Relative Address
-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address
-trans_length (0-0xFFFF) 0x1 Number of blocks to verify
—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7 <current> | Temporary UIL override
-dev 0-7 <current> | Temporary device index override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout ©0-7 0 Single cmd timeout override

(0=no override)
—set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
C.66 verifyl2

Command Name(s): verifyl2, verl2

Description: Asks drive to verify data written on media. If bytechk=0, trans_length is # of blocks to verify
internally. If bytechk=1, trans_length is also blocks being sent to drive, so send_length must be made the same as

trans_length.

Default Parm Order: 1ba,

trans_length,

Buffer Data Sent: Buf fer Data

Buffer Data Received:

Parameters:

vrprotect

HGST Confidential

166

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

—-dpo Oorl) 0x0 Disable Page Out

-bytechk (0-3) 0x0 Byte Check

-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address:
previously was lba_low and
Iba_high

—-trans_length (0-OxFFFFFFFF | 0x0 Number of blocks to verify

-restricted Oorl) 0x0 <No Description Available>

—group_number (0-0x1F) 0x0 <No Description Available>

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

-dev (0-7 <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.67 verifyl6

Command Name(s): verifyl6,verl6

Description: Asks drive to verify data written on media. If bytechk=0, trans_length is # of blocks to verify
internally. If bytechk=1, trans_length is also blocks being sent to drive, so send_length must be made the same as
trans_length.

Default Parm Order: 1ba, trans_length, vrprotect

Buffer Data Sent: Buf fer Data

Buffer Data Received:

Parameters:

HGST Confidential 167

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
—-dpo Oorl) 0x0 Disable Page Out
-bytechk (0-3) 0x0 Byte Check
-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address:
FFFFFFFF) previously was lba_low and
Iba_high
—-trans_length (0-OxFFFFFFFF | 0x0 Number of blocks to verify
-restricted Oorl) 0x0 <No Description Available>
—group_number (0-0x1F) 0x0 <No Description Available>
—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7) <current> | Temporary UIL override
-dev (0-7 <current> | Temporary device index override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

C.68 verify32

Command Name(s): verify32,ver32

Description: Asks drive to verify data written on media. If bytechk=0, trans_length is # of blocks to verify
internally. If bytechk=1, trans_length is also blocks being sent to drive, so send_length must be made the same as
trans_length.

Default Parm Order: 1ba, translen

Buffer Data Sent: Buf fer Data

Buffer Data Received:

Parameters:

HGST Confidential 168

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

—add_cdb_len (0-0xFF) 0x18 Additional CDB Length

-serv_action (0-OxFFFF) 0xA Service Action

-vrprotect (0-7) 0x0 EndToEnd VrProtect field

—dpo Oorl) 0x0 <No Description Available>

-bytechk (0-3) 0x0 <No Description Available>

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

-1br_tag_msb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag MSB

-1br_tag_1lsb (0-OxFFFF) OXFFFF Expected Initial Logical Block
Reference Tag LSB

-1lba_tag (0-0xFFFF) 0x0 Logical Block Application Tag

-lba_tag_mask (0-OxFFFF) 0x0 Logical Block Application Tag
Mask

—-translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

-dev 0-7 <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.69

vu_commit_verify

Command Name(s): vu_commit_verify

Description: Upon receipt of commit verify command, drive updates verify pointer

Default Parm Order: target_band

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

HGST Confidential

169

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
-target_band (0-0xFFFF) | 0x0 Target band of commit verify
-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil ©0-7) <current> | Temporary UIL override
—dev 0-7 <current> | Temporary device index override
—-cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)
-set_timeout 0-7) 0 Persistent timeout override
(O=no override)
—dummy 0-1) 0 Don’t actually send the command

C.70

vu_define_band_type

Command Name(s): vu_define_band_type

Description: Define Band Type

Default Parm Order: target_band, band_type

Buffer Data Sent: None

Buffer Data Received: None

Parameters:
| Name | Range | Default | Description

-target_band (0-0xFFFF) | 0x0 Target Band Number

-band_type (0-3) 0x2 Band Type

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

—cmd_timeout 0-7 0 Single cmd timeout override
(O=no override)

-set_timeout 0-7 0 Persistent timeout override
(O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.71

vu_query_band_information

Command Name(s): vu_query_band_information

Description: Returns information associated with bands

Default Parm Order: target_band,

Buffer Data Sent: None

alloc

HGST Confidential

170

APPENDIX C. SCSI COMMANDS

Buffer Data Received: <alloc> Bytes

Parameters:

Name | Range | Default Description

-target_band (0-OxFFFF) 0x1 Target band number

-alloc (0-OxFFFFFFFF | 0x60 Allocation Length in Bytes

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7 <current> | Temporary UIL override

-dev 0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—-cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout (0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.72 vu_query_last_verify_error

Command Name(s): vu_query_last_verify_error

Description: Verify from last verified Iba of the band through appropriate EOT
Default Parm Order: drp_level, last_band_num, alloc

Buffer Data Sent: None

Buffer Data Received: <alloc> Bytes

Parameters:

HGST Confidential 171

APPENDIX C. SCSI COMMANDS

’ Name \ Range Default Description

—-drp_level (0-0xFF) 0x0 DRP level specifies the relative
depth of verify DRP

—last_band_num | (0-OxFFFF) | 0x0 The last written band number

-alloc (0-OxFFFF) | 0x20 Allocation Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7) <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-ri 0-7) <current> | Temporary receive buffer
override

—cmd_timeout -7 0 Single cmd timeout override
(0O=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)

—dummy (0-1) 0 Don’t actually send the command

C.73

vu_reset_write_pointer

Command Name(s): vu_reset_write_pointer

Description: Reset write pointer for the designated band

Default Parm Order: target_band

Buffer Data Sent: None

Buffer Data Received: None

Parameters:

Name | Range Default Description

-target_band (0-OxFFFF) | 0x0 Target band must be sequential
write band with reliable write
band

—-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil ©0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0O=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.74

vu_set_write_pointer

Command Name(s): vu_set_write_pointer

HGST Confidential

172

APPENDIX C. SCSI COMMANDS

Description: Move the write pointer position to start of track of given logical block address

Default Parm Order: w_pointer_lba

Buffer Data Sent: None

Buffer Data Received: None

Parameters:
Name \ Range \ Default \ Description
-w_pointer_1lba | (0-OXFFFFFFFF | 0x0 Write Pointer LBA
FFFFFFFF)

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.75 vu_verify_squeezed_blocks

Command Name(s): vu_verify_ squeezed_blocks

Description: Verify from last verified 1ba of the band through appropriate EOT

Default Parm Order: drp_level,

Buffer Data Sent: <alloc> Bytes

Buffer Data Received: None

Parameters:

target_band,

alloc

HGST Confidential

173

APPENDIX C. SCSI COMMANDS

’ Name \ Range Default \ Description ‘
—-drp_level (0-0xFF) 0x0 DRP level specifies the relative
depth of verify DRP
—target_band (0-0xFFFF) | 0x0 Target band must be sequential
write band
-alloc (0-OxFFFF) | 0x1 Allocation Length in Bytes
-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil ©0-7 <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-si 0-7) <current> | Temporary send buffer override
—cmd_timeout -7 0 Single cmd timeout override
(0O=no override)
—-set_timeout 0-7) 0 Persistent timeout override
(0O=no override)
—dummy (0-1) 0 Don’t actually send the command

C.76 writel0

Command Name(s): writelO,wl0, wrl0

Description: Writes blocks of memory to the disk.

Default Parm Order: 1ba,

translen,

Buffer Data Sent: <t ranslen> Blocks

Buffer Data Received: None

wrprotect

Parameters:

Name | Range Default | Description

-wrprotect (0-7) 0x0 EndToEnd WrProtect field

—dpo Oorl) 0x0 Disable Page Out

-fua Oorl) 0x0 Force Unit Access

-reladr Oorl) 0x0 Relative Block Address

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

—translen (0-OxFFFF) 0x1 Transfer Length in Blocks

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil (0-7 <current> | Temporary UIL override

-dev 0-7) <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential

174

APPENDIX C. SCSI COMMANDS

C.77 writel2

Command Name(s): writel2,wl2, wrl2

Description: Writes blocks of memory to the disk.

Default Parm Order: 1ba,

translen, wrprotect

Buffer Data Sent: <t ranslen> Blocks

Buffer Data Received: None

Parameters:

Name Range Default Description

-wrprotect (0-7) 0x0 EndToEnd WrProtect field

—dpo Oorl) 0x0 Disable Page Out

-fua Oorl) 0x0 Force Unit Access

—-fua_nv Oorl) 0x0 FUA Non-Volatile Cache

-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

-translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7 <current> | Temporary UIL override

—dev ©0-7 <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—cmd_timeout ©0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.78 writel6

Command Name(s): writel6,wl6,wrl6

Description: Reads blocks of memory from the disk.

Default Parm Order: 1ba,

translen, wrprotect

Buffer Data Sent: <t ranslen> Blocks

Buffer Data Received: None

Parameters:

HGST Confidential

175

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-wrprotect (0-7) 0x0 EndToEnd WrProtect field

—dpo Oorl) 0x0 Disable Page Out

—-fua Oorl) 0x0 Force Unit Access

—fua_nv Oorl) 0x0 Force Unit Access Non-Volatile
Cache

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

—translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

-dev (0-7 <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.79 write32

Command Name(s): write

32,w32,wr32

Description: Writes blocks of memory to the disk.

Default Parm Order: 1ba,

translen

Buffer Data Sent: <t ranslen> Blocks

Buffer Data Received: None

Parameters:

HGST Confidential

176

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-control_byte (0-0xFF) 0x0 VU | Reserved | FLAG | LINK

—-add_cdb_len (0-OxFF) 0x18 Additional CDB Length

-serv_action (0-0xFFFF) 0xB Service Action

-wrprotect (0-7) 0x0 EndToEnd WrProtect field

—dpo Oorl) 0x0 Disable Page Out

-fua Oorl) 0x0 Force Unit Access

—-fua_nv Qorl) 0x0 Force Unit Access Non-Volatile
Cache

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

—-1lbr_tag_msb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag MSB

—-1lbr_tag_1lsb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag LSB

-1lba_tag (0-OxFFFF) 0x0 Logical Block Application Tag

-1lba_tag_mask (0-0xFFFF) 0x0 Logical Block Application Tag
Mask

-translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.80 write6

Command Name(s): write6, w6, wr6
Description: Writes blocks of memory to the disk.
Default Parm Order: 1ba, translen

Buffer Data Sent: <t ranslen> Blocks

Buffer Data Received: None

Parameters:

HGST Confidential

177

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-lba (0-0xFFFF) | 0x0 Logical Block Address

-translen (0-OxFF) Ox1 Transfer Length in Blocks

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—-cmd_timeout 0-7) 0 Single cmd timeout override
(O=no override)

-set_timeout 0-7 0 Persistent timeout override
(O=no override)

—dummy 0-1) 0 Don’t actually send the command

C.81

write_and_verify

Command Name(s): write_and_verify,wrv

Description: Requests the drive write data and then check it.

Default Parm Order: 1ba, trans_length, wrprotect

Buffer Data Sent: <trans_length> Blocks

Buffer Data Received: None

Parameters:

| Name | Range Default | Description
-wrprotect (0-7) 0x0 EndToEnd WrProtect field
—dpo Oorl) 0x0 Disable Page Out
-bytechk (0-3) 0x0 Byte Check
-rel_adr Oorl) 0x0 Relative Address
—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address
—trans_length (0-OxFFFF) 0x1 Transfer Length in Blocks
—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
-uil 0-7 <current> | Temporary UIL override
-dev 0-7) <current> | Temporary device index override
-si 0-7 <current> | Temporary send buffer override
—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command
HGST Confidential 178

APPENDIX C. SCSI COMMANDS

C.82 write_and_verify12

Command Name(s): write_and_verifyl2,wrvl2

Description: Requests the drive write data and then check it.

Default Parm Order: 1ba, trans_length, wrprotect

Buffer Data Sent: <trans_length> Blocks

Buffer Data Received: None

Parameters:
Name | Range Default Description
-wrprotect (0-7) 0x0 EndToEnd WrProtect field
—dpo Oorl) 0x0 Disable Page Out
-bytechk (0-3) 0x0 Byte Check
-RelAdr Oorl) 0x0 <No Description Available>
-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address
-trans_length (0-OxFFFFFFFF | 0x0 Transfer Length in Blocks
—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7 <current> | Temporary UIL override
—dev ©0-7 <current> | Temporary device index override
-si 0-7) <current> | Temporary send buffer override
—cmd_timeout ©0-7 0 Single cmd timeout override

(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.83 write_and_verifyl6

Command Name(s): write_and_verifyl6,wrvl6

Description: Requests the drive write data and then check it.

Default Parm Order: 1ba,

Buffer Data Sent: <trans_length> Blocks

Buffer Data Received: None

Parameters:

trans_length,

wrprotect

HGST Confidential

179

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-wrprotect (0-7) 0x0 EndToEnd WrProtect field

—dpo Oorl) 0x0 Disable Page Out

-bytechk (0-3) 0x0 Byte Check

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address:

FFFFFFFF) previously was lba_low and

Iba_high

—trans_length (0-OxFFFFFFFF | 0x0 Transfer Length in Blocks

-restricted Oorl) 0x0 <No Description Available>

—group_number (0-Ox1F) 0x0 <No Description Available>

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-si (0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.84 write_and_verify32

Command Name(s): write_and_verify32,wrv32

Description: Requests the drive write data and then check it.

Default Parm Order: 1ba, translen

Buffer Data Sent: <t ranslen> Blocks

Buffer Data Received: None

Parameters:

HGST Confidential

180

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-control_byte (0-0xFF) 0x0 VU | Reserved | FLAG | LINK

—-add_cdb_len (0-OxFF) 0x18 Additional CDB Length

-serv_action (0-0xFFFF) 0xC Service Action

-wrprotect (0-7) 0x0 EndToEnd WrProtect field

—dpo Oorl) 0x0 Disable Page Out

-bytechk (0-3) 0x0 Byte Check

—-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

-1lbr_tag_msb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag MSB

—-1lbr_tag_1lsb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag LSB

-lba_tag (0-OxFFFF) 0x0 Logical Block Application Tag

-1ba_tag_mask (0-0xFFFF) 0x0 Logical Block Application Tag
Mask

-translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.85 write_buffer

Command Name(s): write_buffer,writebuf

Description: Used with read_buffer to test drive’s memory.

Default Parm Order: mode,

Buffer Data Sent: <send_bytes> Bytes

Buffer Data Received: None

Parameters:

par_1ls_1lngth

HGST Confidential

181

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-mode_specific | (0-7) 0x0 For all modes except 0xD, 0
signifies byte mode transfer,
and 4 signifies block mode
transfer. For mode 0xD,
mode_specific can have values
of 1,2,4, for PO_ACT, HR_ACT,
and VSE_ACT respectively

-mode (0-0x1F) 0x0 Mode

-buffer_id (0-OxFF) 0x0 Buffer ID

-buff_offset (0-0xFFFFFF) | 0x0 Buffer Offset

-par_ls_lngth (0-OxFFFFFF) | 0x4 Parameter List Length in Bytes

-control_byte (0-OxFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

-dev 0-7) <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

-reserved_area | (Oorl) 0 1 if the command is issued to a

reserved area, O if the command

is issued to a customer area

C.86 write_buffer32

Command Name(s): write_buffer32,writebuf32

Description: Used with read_buffer to test drive’s memory.

Default Parm Order: mode,

par_1ls_lngth

Buffer Data Sent: <send_bytes> Bytes

Buffer Data Received: None

Parameters:

HGST Confidential

182

APPENDIX C. SCSI COMMANDS

Name \ Range \ Default \ Description

-control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

-mode_specific | (0-7) 0x0 For all modes except 0xD, 0
signifies byte mode transfer,
and 4 signifies block mode
transfer. For mode 0xD,
mode_specific can have values
of 1,2,4, for PO_ACT, HR_ACT,
and VSE_ACT respectively

-mode (0-0x1F) 0x0 Mode

—-add_cdb_1len (0-OxFF) 0x18 <No Description Available>

—-service_actio | n (0-OxFFFF) 0xFF3B <No Description Available>

-buffer_id (0-OxFFFFFFFF | 0x0 Buffer ID

-buff_offset (0-OxFFFFFFFF | 0x0 Buffer Offset

FFFFFFFF)
-par_ls_1lngth (0-OxFFFFFFFF | 0x20 Parameter List Length in Bytes
FFFFFFFF)

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.87 write_long

Command Name(s): write_long, wrlong

Description: Requests that the drive write one block of data.

Default Parm Order: 1ba,
Buffer Data Sent: <trans_length> Bytes

Buffer Data Received: None

Parameters:

trans_length

HGST Confidential

183

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default Description

-cor_dis Oorl) 0x0 <No Description Available>

—Wr_uncor Oorl) 0x0 <No Description Available>

-pblock Oorl) 0x0 Send entire phy block w/ the
logical block

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address

—trans_length (0-OxFFFF) 0x228 Transfer Length in Bytes

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7) <current> | Temporary send buffer override

—-cmd_timeout (0-7) 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7) 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.88 write_longl6

Command Name(s): write_longl6,wrlongl6

Description: Requests that the drive write one block of data.

Default Parm Order: 1ba,

trans_len

Buffer Data Sent: <t rans_len> Bytes

Buffer Data Received: None

Parameters:

HGST Confidential

184

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-cor_dis Oorl) 0x0 <No Description Available>

—Wr_uncor Oorl) 0x0 <No Description Available>

-pblock Oorl) 0x0 Send entire phy block w/ the
logical block

—-serv_act (0-0x1F) 0x11 <No Description Available>

—1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

—trans_len (0-OxFFFF) 0x0 Transfer Length in Bytes

—cort Oorl) 0x0 Corrected bit

-control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-si (0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.89 write _same

Command Name(s): write_same, wrs

Description: Writes one block of data to a number of logical blocks.

Default Parm Order: 1ba,
Buffer Data Sent: 1 Blocks
Buffer Data Received: None

Parameters:

num_blocks,

wrprotect

HGST Confidential

185

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description
-wrprotect (0-7) 0x0 EndToEnd WrProtect field
—anchor Oorl) 0x0 Anchor bit
—unmap Oorl) 0x0 Deallocates each LBA specified
in command
-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address
-num_blocks (0-OxFFFF) 0x1 Number of Continuous Blocks to
be written
—control_byte (0-OxFF) 0x0 NACA | FLAG | LINK
—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd
—uil 0-7) <current> | Temporary UIL override
—dev 0-7) <current> | Temporary device index override
-si (0-7 <current> | Temporary send buffer override
—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)
—-set_timeout 0-7 0 Persistent timeout override
(0=no override)
—dummy (0-1) 0 Don’t actually send the command

CI90 write samel6

Command Name(s): write_samel6,wrsl6

Description: Writes one block of data to a number of logical blocks.

Default Parm Order: 1ba,
Buffer Data Sent: 1 Blocks
Buffer Data Received: None

Parameters:

num_blocks,

wrprotect

HGST Confidential

186

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-wrprotect (0-7) 0x0 EndToEnd WrProtect field

—anchor Oorl) 0x0 <No Description Available>

—unmap Oorl) 0x0 Deallocates each LBA specified
in command

-1ba (0-OxFFFFFFFF | 0x0 Logical Block Address:

FFFFFFFF) previously was lbalow and

Ibahigh

-num_blocks (0-OxFFFFFFFF | 0x1 Number of Continuous Blocks to
be written

—control_byte (0-0xFF) 0x0 NACA | FLAG | LINK

—transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

—uil 0-7) <current> | Temporary UIL override

—dev 0-7 <current> | Temporary device index override

-si (0-7 <current> | Temporary send buffer override

—cmd_timeout 0-7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

C.I1

Command Name(s): write_same32,wrs32

write_same32

Description: Requests the drive write data and then check it.

Default Parm Order: 1ba,

translen

Buffer Data Sent: 1 Blocks

Buffer Data Received: None

Parameters:

HGST Confidential

187

APPENDIX C. SCSI COMMANDS

’ Name \ Range \ Default \ Description

-control_byte (0-0xFF) 0x0 VU | Reserved | FLAG | LINK

—-add_cdb_len (0-OxFF) 0x18 Additional CDB Length

-serv_action (0-0xFFFF) 0xD Service Action

-wrprotect (0-7) 0x0 <No Description Available>

—anchor Oorl) 0x0 <No Description Available>

—unmap Oorl) 0x0 <No Description Available>

—-1lba (0-OxFFFFFFFF | 0x0 Logical Block Address

FFFFFFFF)

-1lbr_tag_msb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag MSB

—-1lbr_tag_1lsb (0-OxFFFF) OxXFFFF Expected Initial Logical Block
Reference Tag LSB

-lba_tag (0-OxFFFF) 0x0 Logical Block Application Tag

-1ba_tag_mask (0-0xFFFF) 0x0 Logical Block Application Tag
Mask

-translen (0-OxFFFFFFFF | 0x1 Transfer Length in Blocks

—-transport_cdb | (0-1) <current> | Convert to 0xC3 transport cmd

-uil 0-7 <current> | Temporary UIL override

—dev 0-7) <current> | Temporary device index override

-si 0-7 <current> | Temporary send buffer override

—cmd_timeout -7 0 Single cmd timeout override
(0=no override)

—-set_timeout 0-7 0 Persistent timeout override
(0=no override)

—dummy (0-1) 0 Don’t actually send the command

HGST Confidential

188

Appendix D

CIL Commands

D.1 ata get

Command Name(s): ata get

Description: This command will read and display info on the desired part of an ata device. Append ata get
with one of the following commands to get the info. Possible Commands: STATUS - Status Register, ERROR
- Error Register, ERRLBA - Lower 32 bits of the 48 bit LBA, ERRLBAHI - Upper 16 bits of the 48 bit LBA,
ERRLBAZ2S - All of the 28 bit LBA, SCR - Sector Count Register, SNR - Sector Number / LBA Low Register,
CLR - Cylinder Low / LBA Mid Register, CHR - Cylinder High / LBA High Register, DHR - Device Head
Register, PSCR - Sector Count Register, PSNR - Sector Number / LBA Low Register, PCLR - Cylinder Low /
LBA Mid Register, PCHR - Cylinder High / LBA High Register, SHADOW - Default to show it all.

Default Parm Order: commands

Parameters:

’ Name \ Description ‘

’ commands \ See possible commands in the description above. ‘

D.2 buff adlerchksum

Command Name(s): buff adlerchksum
Description: Compute checksum of buffer data using Adler32 algorithm with base of 1.
Default Parm Order: index offset length

Parameters:

Name Description

index Buffer Index (Number or send or recv)
offset | offset to begin checksum calculation at
length | length of checksum calculation

D.3 buff checksum

Command Name(s): buff checksum
Description: Computes 32-bit checksum of buffer data.

Default Parm Order: index offset length

HGST Confidential 189

APPENDIX D. CIL COMMANDS

Parameters:

Name Description

index Buffer Index (Number or send or recv)
offset | offset to begin checksum calculation at
length | length of checksum calculation

D.4 buff compare

Command Name(s): buff compare

Description: This function compares the contents of two buffers over a specified range for a match. If the
buffers match, O is returned, if buffer 1 < buffer 2, -1 is returned. If buffer 1 > buffer 2, 1 is returned. This
command is useful for verification operations in CSO.

Default Parm Order: indexl index2 length

Parameters:

Name Description

index1 | First buffer index to compare
index2 | Second buffer index to compare
length | Amount of buffer to compare

D.5 buff copy

Command Name(s): buff copy
Description: This function can be used to copy portions of an existing buffer to another buffer. One useful
application of this command is the mode sense/select combo; mode sense data can be copied from the receive

buffer to the send buffer, changes can be made, then the new buffer can be "mode selected".

Default Parm Order: source_index dest_index ?source_offset? ?dest_offset? ?length?

Parameters:

Name Description

source_index Index of the buffer to copy from

dest_index Index of the buffer to copy to

source_offset | Optional: Offset into from buffer

dest_offset Optional: Offset into to buffer

length Optional: Amount of buffer to copy (D=All)
HGST Confidential

190

APPENDIX D. CIL COMMANDS

D.6 buff crc

Command Name(s): buff crc

Description: Computes 32-bit CRC of buffer data.

Default Parm Order: index offset length

Parameters:
Name \ Description
index Buffer Index (Number or send or recv)
offset | offset to begin CRC calculation at
length | length of CRC calculation

D.7 buff diff

Command Name(s): buff diff

Description: This function diffs the contents of two buffers over a specified range for a match. In the standard
implementation the information reported is: the address of the first difference and the number of bytes that are
different in the file. When -v is used the same information is shown in addition to a hex dump of any two 8 byte
regions that contain differences between the files (differences are surrounded by () characters). For backward-
compatibility reasons, offsetl is applied to both buffers if offset2 is not specified.

Default Parm Order: indexl index2 amount ?offsetl? ?offset2?
-pre? 72-fp? 72-f? ?-fa? ?-do?

?-dw? ?-dd? ?

Parameters:

Name | Description
indexl First Index to diff
index2 Second Index to diff
amount Amount to diff
offsetl | Optional: Offset into buffer 1 to begin diff (default=0)
offset2 | Optional: Offset into buffer 2 to begin diff (default=0)
-b Optional: The number of bytes to display per line (default=8)
-a Optional: Show ASCII
-v Optional: Show all differences between buffers
-d Optional: Dump entire buffer range, highlighting differences
—dw Optional: show 16-bit differences
-dd Optional: show 32-bit differences
-pre Optional: string to place in front of different lines
-fp Optional: show diffs with fewer parans
-f Optional: write data to file (instead of returning data)
-fa Optional: append data to file
—do Optional: display buffer data only

HGST Confidential 191

APPENDIX D. CIL COMMANDS

D.8 buff dump

Command Name(s): buff dump, bd

Description: This function dumps the data contained in a specified buffer in hex. For the "specified buffer",
either an index, "send" or "recv" can be used. Output can be formated using the several optional format flags. The

column, sub, and hex width used to be set like "-column_width 16", but that has had to be changed to just the
value in the correct order.

Default Parm Order: ?index? ?2offset? ?length? 2column_width? ?sub_width? ?hex_width?
?-big_endian? ?-hide_ascii? ?-hide_header? ?-hide_offset? ?-hide_divider? ?-show_x?
?-dw? ?-dd? ?-gqw? ?-1p? ?-op? ?-column_width? ?-sub_width? ?-hex_width? ?-be?
?-ha? ?-hh? ?-ho? ?-hd? ?-sx? ?-cw? ?-sw? ?-hw?

Parameters:

HGST Confidential 192

APPENDIX D. CIL COMMANDS

Name \ Description

index Optional: Buffer Index (Number or send or recv)

offset Optional: Offset into buffer (Default = 0)

length Optional: Number of bytes to dump (Default = 255)
column_width Optional: Width of hex data in bytes (Default = 16)
sub_width Optional: Width of sub columns in bytes (Default = 8)
hex_width Optional: Word length in bytes (Default = 1)

-big_endian Optional: Display words in big endian form

~hide_ascii Optional: Do not display ASCII data

-hide_header Optional: Do not display the table header

—hide_offset Optional: Do not display the address column
-hide_divider | Optional: Do not display the dashed divider

—-show_x Optional: Display the "0x" before all hex values

—dw Optional: Deprecated: Output data in little endian 16-bit words
—dw Optional: Deprecated: Output data in little endian 16-bit words
-dd Optional: Deprecated: Output data in little endian 32-bit words
-dd Optional: Deprecated: Output data in little endian 32-bit words
—-qw Optional: Deprecated: Output data in little endian 64-bit words
—-qw Optional: Deprecated: Output data in little endian 64-bit words
-1p Optional: Treat length as number of pages (512 bytes)

-op Optional: Treat length as number of pages (512 bytes)
—column_width | Optional: column_width is also the 4th optional flag
-sub_width Optional: sub_width is also the 5th optional flag
—hex_width Optional: hex_width is also the 6th optional flag

—-be Optional: Display words in big endian form

-ha Optional: Do not display ASCII data

-hh Optional: Do not display the table header

-ho Optional: Do not display the address column

-hd Optional: Do not display the dashed divider

-sx Optional: Display the "0x" before all hex values

-cw Optional: column_width is also the 4th optional flag

-sw Optional: sub_width is also the 5th optional flag

—hw Optional: hex_width is also the 6th optional flag

D.9 Dbuff e2e

Command Name(s): buff e2e

Description: This command can be used to calculate the guard of end-to-end buffer data. It can also be used
to set the apptag value and the reftag value. All parameters are optional and at least one parameter should be
specified for the command to do something. Note that the very first time this function is called, a lookup-table is
generated. Future calls simply use the lookup talbe, resulting in improved performance.

Default Parm Order: ?-guard? ?-offset? ?-blksize? ?-buffindex? ?-index? 2?-length?
?-apptag? ?-1lba? ?-check? ?-info?

Parameters:

HGST Confidential 193

APPENDIX D. CIL COMMANDS

D.11

Name \ Description

-guard Optional: Specify this flag to calculate the guard crc value

-offset Optional: Block Offset into the buffer (Default = 0)

-blksize Optional: Current Block Size w/o e2e Data (Default = 512)

-buffindex | Optional: Buffer index to use (Default = current send idx)

—index Optional: Buffer Index (number, send, or recv)

—-length Optional: Number of blocks to calculate (Default = 1)

-apptag Optional: Set the app tag value (Default = no change)

—lba Optional: Set the starting reftag value (Default = no change)

—check Optional: check existing data and return error if it does not match expected
—check Optional: check existing data and return error if it does not match expected
—-info Optional: Do not set buffer data, but return calculated guard value

-info Optional: Do not set buffer data, but return calculated guard value

D.10 buff fil

Command Name(s): buff fill byte,

1 byte

bfb

Description: This function fills a buffer with a particular byte value.

Default Parm Order: index offset length byte

Parameters:
Name Description
index Buffer Index (number, send, or recv)
offset | Offset into the buffer, in bytes
length | Length of pattern to write
byte The byte value to write
buff fill float

Command Name(s): buff fill float,

Description: This function can be used to insert a 32-bit or 64-bit float value into a buffer. This can be useful
for setting up CDB parameters and other tasks.

bff

Default Parm Order: index offset float size ?-1le?

Parameters:
Name Description
index Buffer Index (number, send, or recv)
offset | Offset into the buffer, in bytes
float The float value to write
size The size of float to use, 4 or 8 bytes
-le Optional: Use little endian mode

HGST Confidential

APPENDIX D. CIL COMMANDS

D.12 buff fill int

Command Name(s): buff £ill int, bfi

Description: This function can be used to insert an integer value into a buffer. This can be useful for setting
up CDB parameters and for tagging write data with information (such as LBA or other information).

Default Parm Order: index offset int ?-1le?

Parameters:

Name [Description

index Buffer Index (number, send, or recv)
offset | Offset into the buffer, in bytes

int The integer value to write

-le Optional: Use little endian mode

D.13 buff fill int64

Command Name(s): buff £ill int64

Description: This function can be used to insert a 64-bit value into a buffer. This can be useful for setting up
CDB parameters and other tasks.

Default Parm Order: index offset inté64 ?-le?

Parameters:

Name [Description

index Buffer Index (number, send, or recv)
offset | Offsetinto the buffer, in bytes
int64 The long value to write

-le Optional: Use little endian mode

D.14 Dbuff fill one

Command Name(s): buff £fill one, bfo
Description: This commands fills a specified buffer with OxFF bytes.
Default Parm Order: index offset length

Parameters:

Name Description

index Buffer Index (number, send, or recv)
offset | Offset into the buffer, in bytes
length | Length of pattern to write

HGST Confidential 195

APPENDIX D. CIL COMMANDS

D.15 buff fill patt

Command Name(s): buff fill patt, bfp

Description: This function fills a specified buffer with a pattern of bytes. The bytes should each be 0-255
(0x00-0xff) and should have 0x prepended if the intended values are in hex.

Default Parm Order: index offset length byte_list

Parameters:
Name Description
index Buffer Index (number, send, or recv)
offset Offset into the buffer, in bytes
length Length of pattern to write
byte_list | List of byte patterns

D.16 buff fill rand

Command Name(s): buff f£ill rand, bfr

Description: This function writes random bytes of data to a specified buffer. This function is useful for setting
up a buffer for random CSO operations.

Default Parm Order: index offset length ?channel?

Parameters:
Name Description
index Buffer Index (number, send, or recv)

offset Offset into the buffer, in bytes
length Length of pattern to write
channel | Optional: The Channel to use to seed the value

D.17 buff fill seq

Command Name(s): buff fill seq, bfs

Description: This function writes a sequence of data to the specified buffer. The command is useful for
generating sequential data patterns. The minimum and maximum values for the pattern can be optionally specified.
If no minimum or maximum value is specified 0-255 (0x00-0xff) is used as a default range.

Default Parm Order: index offset length ?min? ?max?

Parameters:

HGST Confidential 196

APPENDIX D. CIL COMMANDS

’ Name \ Description

index Buffer Index (number, send, or recv)
offset | Offsetinto the buffer, in bytes

length | Length of pattern to write

min Optional: The value to start the seq data at
max Optional: The value to end the seq data at

D.18 buff fill short

Command Name(s): buff £ill short, bfsh

Description: This function can be used to insert a 16-bit value into a buffer. This can be useful for setting up
CDB parameters and other tasks.

Default Parm Order: index offset short ?-le?

Parameters:

Name \ Description

index Buffer Index (number, send, or recv)
offset | Offsetinto the buffer, in bytes
short The short value to write

-le Optional: Use little endian mode

D.19 bulff fill string

Command Name(s): buff fill string, bfstr

Description: This function is used to put a string into a buffer. The command is useful for tasks such as
time-date and LBA stamping. See the provided example for a demonstration of this.

Default Parm Order: index offset string ?length?

Parameters:

Name \ Description

index Buffer Index (number, send, or recv)
offset | Offsetinto the buffer, in bytes
string | String to write

length | Optional: Number of bytes to write

D.20 buff fill zero

Command Name(s): buff fill zero, bfz

Description: This function provides a convenient method for zeroing out a buffer.

HGST Confidential 197

APPENDIX D. CIL COMMANDS

Default Parm Order: index offset length

Parameters:

Name Description

index Buffer Index (number, send, or recv)
offset | Offset into the buffer, in bytes
length | Length of pattern to write

D.21 buff find

Command Name(s): buff find

Description: This function searches the specified buffer for one or more occurances of the specified data. The
function will return a list of offsets, each offset indicating the starting location of the pattern match. If no matches
are found, then an empty list is returned. Note that this search algorithm will find a pattern, even if it overlaps
another found pattern. For example, if you search for "aaa" in the string "bbbaaaaabbb", three offsets will be
returned: {34 5}.

Default Parm Order: search_buff_index search_buff_offset search_buff_length data_buff_index
data_buff_offset data_buff_ length

Parameters:

Name

Description

search_buff_index Buffer to search in
search_buff_offset | Offset to start the search at
search_buff_ length | Length of buffer to search in

data_buff_ index Buffer containing search data
data_buff offset Offset of the start of the search data
data_buff_length Length of the search data

D.22 buff findstr

Command Name(s): buff findstr

Description: This function searches the specifies buffer for one or more occurances of the specified string.
The function will return a list of offsets, each offset indicating the starting location of the pattern match. If no
matches are found, then an empty list is returned. Note that this search algorithm will find a pattern, even if it
overlaps another found pattern. For example, if you search for "aaa" in the string "bbbaaaaabbb", three offsets
will be returned: {34 5}.

Default Parm Order: search_buff_index search_buff_offset search_buff_length string

Parameters:

HGST Confidential 198

APPENDIX D. CIL COMMANDS

Name

Description

search_buff_ index

Buffer to search in

search_buff offset

Offset to start the search at

search_buff_ length

Length of buffer to search in

string

String to search for

D.23 buff format

Command Name(s): buff format, bf

Description: This command is useful for extracting buffer data in a formatted way. Many CDB commands
return a binary "table" of information. Information from these tables can be easily extracted using this command.
This command works a lot like a scanf() in C and supports many of the same operators. The "offset" and "length"
parameters correspond to the keys found in the format string and determine the offset and length of buffer data to
use as input into the keys (note that the number of keys in the format string must match the number of offset/length
parameters). See the example below... Important: The "offset" and "length" fields given above are NOT parsed
by the buff format command. This means that when using variables, you must surround the fields with quotes and
not braces (or you will get a syntax error). %L is the same as %u only it puts the value in little endian form. %h
and %H work the same as %x and %X respectively only the value is in little endian form.

Default Parm Order: index fmt_str parm list ?-flip_endian? ?-word_length?

Parameters:
Name \ Description
index Buffer Index (number, send, or recv)
fmt_str Format String, printf style
parm_list List of offset and length pairs

-flip_endian | Optional: Flip endianness of buffer, word aligned

-word_length | Optional: Word length in Bytes for flip_endian, defaults to 4 if not specified

-word_length | Optional: Word length in Bytes for flip_endian, defaults to 4 if not specified

D.24 buff get address

Command Name(s): buff get address

Description: Returns the address of the buffer.

Default Parm Order: index

Parameters:

’ Name \ Description ‘

| index | Buffer Index \

HGST Confidential

199

APPENDIX D. CIL COMMANDS

D.25 buff get count

Command Name(s): buff get count

Description: This function returns the maximum number of buffers available (the default setting is 10). This
maximum can be changed with "buff set count".

Default Parm Order: <None>

D.26 buff get dsize

Command Name(s): buff get dsize

Description: This functions returns the minimum buffer allocation size. This parameter controls the size a
buffer created at when it is first filled with data. Note that, buffers auto expand when needed so this command is
not needed for functional operations. The usefulness of this command is for certain "algorithm" patterns where
successively larger chunks of data are read into a buffer, requiring a lot of "costly" resizing.For most applications,
this command can be safely ignored.

Default Parm Order: <None>

D.27 buff get ri

Command Name(s): buff get ri

Description: This function returns the current receive buffer index. CDB commands that return data (such as
read10) will fill this buffer index with data. Note that, when specifying indexes in commands that require them, a
"recv" can be used in place of the index (see the example below). Also note that "recv" only works with Niagara
specific commands. When in doubt, use "buff get ri", which always works.

Default Parm Order: <None>

D.28 Dbuff get si

Command Name(s): buff get si

Description: This function returns the current send buffer index. CDB commands that send data (such as
write10) will send data from this buffer. Note that, when specifying indexes in commands that require them, a
"send" can be used in place of the index. Also note that "send" only works with Niagara specific commands.
When in doubt, use "buff get si", which always works.

Default Parm Order: <None>

D.29 buff get size

Command Name(s): buff get size

Description: Returns the amount of space that is allocated to a specified buffer. This is the same value that is
used by buff diff when a length of 0 is specified. buff get size index.

HGST Confidential 200

APPENDIX D. CIL COMMANDS

Default Parm Order: index

Parameters:

[Name | Description ‘

’ index \ Buffer Index ‘

D.30 buff gets

Command Name(s): buff gets
Description: This function is intended to parse through a text fle loaded into a buffer. the variable varname
is loaded with the contents between the offset given and the first pattern character. The value returned is the first

non pattern character past the string returned. The pattern sequence is \n, \r and NULL.

Default Parm Order: buff offset varname

Parameters:
Name Description
buff Buffer Index (number, send, or recv)

offset Offset into buffer, in bytes
varname | The name of the variable to store the results

D.31 Dbuffload

Command Name(s): buff load

Description: This function is used to load the contents of a (binary) file into a buffer. This function is
useful in binary parsing operations, as the "buff format" command can be used to easily parse the data contained
in a structured binary file (such as a saved binary logdump or a serial dump). Important note: When using a
Windows(tm) system, use forward slashes instead of backward slashes. Backward slashes in TCL are interpreted
as special characters (another option is to use two back slashes). Use the ASCII command to import an ASCII file
in binary mode. Note that The ASCII import expect data in a format similar to that produced by the bd command
(an address followed by 16 hex bytes per row). In ASCII mode, the file_offset and file_length variables represent
the offset and length of the interpreted binary data, not the file itself (in strait binary the file offset and binary
offsets are equivalent).

Default Parm Order: filename ?buffer? ?buff offset? ?file_offset? ?length? ?-ascii?

?—-ascii_b?

Parameters:

HGST Confidential 201

APPENDIX D. CIL COMMANDS

Name \ Description
filename Filename to load
buffer Optional: Buffer to load into (Default = send)

buff_offset | Optional: Offset into the buffer
file_offset | Optional: Offset into the file

length Optional: Number of bytes to read
—ascii Optional: Load the data in ascii format
-ascii_b Optional: Load the data in big endian format

D.32 buff peek

Command Name(s): buff peek
Description: This function can be used to get a byte from a buffer.
Default Parm Order: index offset

Parameters:

| Name | Description

index Buffer Index (number, send, or recv)
offset | Offsetinto the buffer, in bytes

D.33 buff poke

Command Name(s): buff poke

Description: This function can be used to insert a byte into a buffer. This can be useful for setting up CDB
parameters and other tasks.

Default Parm Order: index offset byte

Parameters:

Name \ Description

index Buffer Index (number, send, or recv)
offset | Offsetinto the buffer, in bytes
byte Byte to write to the buffer

D.34 buff print sgl

Command Name(s): buff print sgl

Description: This command prints a representation of an SGL as specified by the parameter, buffer index.

Default Parm Order: index

HGST Confidential 202

APPENDIX D. CIL COMMANDS

Parameters:

[Name | Description \

’ index \ Buffer Index ‘

D.35 buff reset

Command Name(s): buff reset

Description: This function clears the contents of existing buffers. This is useful for freeing up memory
resources after a memory intensive operation.

Default Parm Order: <None>

D.36 buff rsa keygen

Command Name(s): buff rsa keygen
Description: Create an RSA public/private key pair. These keys are used during signature creation and verifi-
cation. The command returns a list of key sizes {pubKeySize privKeySize} buff rsa keygen ?random_data_buffer?

Irandom_data_length? ?private_key_buffer? ?public_key_buffer?.

Default Parm Order: random_data_buffer random_data_length private_key_ buffer public_key_buffer

Parameters:

Name Description

random_data_buffer | Buffer index of random data (Number or send or recv)
random_data_length | Length of random data

private_key_buffer | Buffer index for private key (Number or send or recv)
public_key_buffer Buffer index for public key (Number or send or recv)

D.37 buff rsa sign

Command Name(s): buff rsa sign

Description: Create an RSA signature using the provided message data and private key. The buffer in-
dex specified for the signature buffer will contain the signature after the command returns. The command re-
turns the length of the signature in bytes. buff rsa keygen ?message_buffer_index? ?message_length? ?ran-
dom_data_buffer? ?random_data_length? ?priavte_key_buffer_index? ?signature_buffer_index?.

Default Parm Order: message_buffer_index message_length random_data_buffer random_data_length
private_key_buffer signature_buffer_index

Parameters:

HGST Confidential 203

APPENDIX D. CIL COMMANDS

Name Description

message_buffer_index Buffer index of message data (Number or send or recv)
message_length Length of random data

random_data_buffer Buffer index of random data (Number or send or recv)
random_data_length Length of random data

private_key_buffer Buffer index of private key (Number or send or recv)
signature_buffer_index | Buffer index for signature (Number or send or recv)

D.38 buff rsa verify

Command Name(s): buff rsa verify

Description: Verify an RSA signature using the provided message data, public key and signature. The com-
mand will return 1 if the signature verifies correctly, O or error otherwise. buff rsa verify ?message_buffer_index?
Imessage_length? ?public_key_buffer? ?signature_buffer? ?signature_length?.

Default Parm Order: message_buffer_index message_length public_key_buffer signature_buffer
signature_length

Parameters:
Name | Description
message_buffer_index | Buffer index of message data (Number or send or recv)
message_length Length of random data
public_key_buffer Buffer index of public key (Number or send or recv)
signature_buffer Buffer index for signature (Number or send or recv)
signature_length Length of signature data

D.39 Dbuff save

Command Name(s): buff save

Description: This command saves the contents of a buffer to a file. Binary data is stored. An existing file can
be appended to with the -append option. If you wish to store an ASCII hex dump, use the -ascii option...

Default Parm Order: filename buffer buff_offset length ?-ascii? ?-ascii_dw? ?-ascii_dd?
?—append?

Parameters:

HGST Confidential 204

APPENDIX D. CIL COMMANDS

Name \ Description

filename Filename to save

buffer Buffer to save from (Default = send)
buff_offset | Offsetinto the buffer

length Number of bytes to write

—ascii Optional: Save the data in ascii format
—ascii_dw Optional: Save the data in word format
—ascii_dd Optional: Save the data in dword format
—append Optional: Append the data to the end of the file

D.40 Dbuff set count

Command Name(s): buff set count

Description: This function is used to change the number of available buffer indices (the default is 10). This
function is useful in applications where a maximum of 10 buffers is restrictive. Note that any pre-existing buffer
data is lost after this command is executed.

Default Parm Order: count

Parameters:

[Name | Description ‘

’ count \ Maximum Number of Buffers ‘

D.41 buff set dsize

Command Name(s): buff set dsize

Description: This functions sets the minimum buffer allocation size. This controls the size a buffer created
at when it is first filled with data. Note that, buffers auto expand when needed so this command is not needed
for functional operations. The usefulness of this command is for certain "algorithm" patterns where successively
larger chunks of data are read into a buffer, requiring a lot of "costly" resizing. For most applications, this
command can be safely ignored.

Default Parm Order: size

Parameters:

| Name | Description ‘
| size | The Default Size of a Buffers ‘

D.42 buff set pqi_sgl

Command Name(s): buff set pgi_sgl

Description: This procedure sets an sgl as specified by its parameter.

HGST Confidential 205

APPENDIX D. CIL COMMANDS

Default Parm Order: data

Parameters:

| Name | Description ‘
’ data \ data ‘

D.43 Dbuff set ri

Command Name(s): buff set ri, bri

Description: This function sets the current receive buffer index. CDB commands that receive data (such as
read10) will read data into this buffer index. Note that, when specifying indexes in commands that require them,
a "recv" can be used in place of the index. Also note that "recv" only works with Niagara specific commands.
When in doubt, use "buff set ri", which always works.

Default Parm Order: index

Parameters:

[Name [Description ‘

’ index \ Buffer index (must be a number) ‘

D.44 Dbuff set si

Command Name(s): buff set si, bsi

Description: This function sets the current send buffer index. CDB commands that send data (such as write10)
will use send data from this index. Note that, when specifying indexes in commands that require them, a "send"
can be used in place of the index. Also note that "send" only works with Niagara specific commands. When in
doubt, use "buff set si", which always works.

Default Parm Order: index

Parameters:

[Name [Description ‘

’ index \ Buffer index (must be a number) ‘

D.45 Dbuff set size

Command Name(s): buff set size

Description: Allows the user to set the size of a specified buffer in memory. This is the same value that will
be used by buff diff when a length of 0 is specified. Note: The buffer will still resize if more information is written
to the buffer than there is space for. buff set size index size.

HGST Confidential 206

APPENDIX D. CIL COMMANDS

Default Parm Order: index size

Parameters:

Name Description

index | Buffer Index
size Buffer Size (in bytes)

D.46 console_sync

Command Name(s): console_sync

Description: Send the current value of ::guimaker::syncConsoleGui. This value is used to determine if more
than one device could be selected.

Default Parm Order: is_synced

Parameters:

| Name | Description ‘

’ is_synced \ Is the console synchronized? ‘

D.47 device count

Command Name(s): device count
Description: This function returns the number of devices connected to the current UIL driver.
Default Parm Order: ?uil_index?

Parameters:

| Name | Description \
’ uil_index \ Optional: UIL Index ‘

D.48 device create

Command Name(s): device create

Description: This command can be used to change the initiator id of aparticular card. The command can also
be used to manually set up a target. A device with the specified parameters is added to the device list. No checks
are made to see if the device actually exists. Because of this, you may need to do perform a "read_capacity" and
"inquiry" to update drive fields. This command is not available for all drivers.

Default Parm Order: channel host_id target_id lun

Parameters:

HGST Confidential 207

APPENDIX D. CIL COMMANDS

Name \ Description
channel ID of card
host_id Desired Initiator ID
target_id | TargetID

lun LUN

D.49 device get allow_set_when_locked

Command Name(s): device get allow_set_when_locked
Description: This function returns the current targe allow_set_when_locked flag.
Default Parm Order: <None>

D.50 device get callback create

Command Name(s): device get callback create
Description: This function returns the callback mapped to a specific device command. Callbacks are code
segments that are automatically called whenever a command is executed. Currently supported callbacks are lock,

unlock, rescan, create, remove and "set index".

Default Parm Order: <None>

D.51 device get callback lock

Command Name(s): device get callback lock

Description: This function returns the callback mapped to a specific device command. Callbacks are code
segments that are automatically called whenever a command is executed. Currently supported callbacks are lock,
unlock, rescan, create, remove and "set index".

Default Parm Order: <None>

D.52 device get callback remove

Command Name(s): device get callback remove

Description: This function returns the callback mapped to a specific device command. Callbacks are code
segments that are automatically called whenever a command is executed. Currently supported callbacks are lock,
unlock, rescan, create, remove and "set index".

Default Parm Order: <None>

D.S3 device get callback rescan

Command Name(s): device get callback rescan

HGST Confidential 208

APPENDIX D. CIL COMMANDS

Description: This function returns the callback mapped to a specific device command. Callbacks are code
segments that are automatically called whenever a command is executed. Currently supported callbacks are lock,
unlock, rescan, create, remove and "set index".

Default Parm Order: <None>

D.54 device get callback ''set index"

Command Name(s): device get callback "set index"

Description: This function returns the callback mapped to a specific device command. Callbacks are code
segments that are automatically called whenever a command is executed. Currently supported callbacks are lock,
unlock, rescan, create, remove and "set index".

Default Parm Order: <None>

D.S5 device get callback unlock

Command Name(s): device get callback unlock

Description: This function returns the callback mapped to a specific device command. Callbacks are code
segments that are automatically called whenever a command is executed. Currently supported callbacks are lock,
unlock, rescan, create, remove and "set index".

Default Parm Order: <None>

D.56 device get index

Command Name(s): device get index

Description: This function returns the current target index. Because FCAL/SCSI are not the only potential
interfaces available to Niagara, devices on the loop/bus are enumerated. This function returns the index of the
currently selected device.

Default Parm Order: 2uil_index?

Parameters:

| Name | Description ‘
’ uil_index \ Optional: UIL Index ‘

D.57 device get interface

Command Name(s): device get interface

Description: This function returns the interface type (SCSI/FCAL/SAS/etc) of the current device, if the driver
has knowledge of this information. In other cases Unsupported Feature is returned.

Default Parm Order: <None>

HGST Confidential 209

APPENDIX D. CIL COMMANDS

D.5S8 device get last_cmd

Command Name(s): device get last_cmd

Description: This function returns the last CDB/ATA command to be executed. If the last CDB/ATA com-
mand execution attempt failed due to a syntax error, a partially formed CDB/ATA command may be returned.

Default Parm Order: <None>

D.59 device get last_cmd_time

Command Name(s): device get last_cmd_time
Description: Reutrns the command execution time for the last cmd.
Default Parm Order: <None>

D.60 device get read_xfer

Command Name(s): device get read_xfer
Description: Returns the current state of read xfers. One means that buffer transfers on read are enabled.
Zero means transfers are disabled. If read_xfers are disabled, you cannot count on data being in the buffer after a

transfer from target to host. This command is useful when performance is more important than data verification.

Default Parm Order: <None>

D.61 device get receive_count

Command Name(s): device get receive_count

Description: Certain commands, such as inquiry or mode_sense, may return fewer bytes back than were
asked for. This function can be used to determine the number of data bytes that we actually sent from the target
to the host. This feature is not available in all drivers.

Default Parm Order: <None>

D.62 device get reserved

Command Name(s): device get reserved

Description: This command will get the reserved status of a device on a given interface at a given index. If
the device is reserved nothing other than Niagara can send I/O requests to the device. If no index is given then the
current device will be used.

Default Parm Order: ?index?

Parameters:

HGST Confidential 210

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘

| index | Optional: The index to reserve \

D.63 device get send_count

Command Name(s): device get send_count

Description: This function returns the number of bytes actually requested by the device for the last command.
This feature is not available in all drivers.

Default Parm Order: <None>

D.64 device get timeout

Command Name(s): device get timeout
Description: This function returns the timeout value for the current device in milliseconds.
Default Parm Order: ?-override_persistent?

Parameters:

Name Description

-override_persistent | Optional: The timeout currently overriding persistent timeouts. O is disabled

-override_persistent | Optional: The timeout currently overriding persistent timeouts. O is disabled

D.65 device get xfer_mode

Command Name(s): device get xfer_mode

Description: Returns the current transfer mode for the current driver. Possible modes are: normal, hc, copy,
random, random_hc, random_seed, random_seed_keyed, keyed, keyed_hc, inc, inc_hc, repeat, repeat_hc.

Default Parm Order: <None>

D.66 device hbareset

Command Name(s): device hbareset

Description: This function resets the device driver and rescans the interface of the current UIL driver for
new/removed devices. Note that not all UIL drivers support hbaresets.

Default Parm Order: <None>

D.67 device info

Command Name(s): device info

HGST Confidential 211

APPENDIX D. CIL COMMANDS

Description: This function returns the following information about a device: VendorID, Serial, CodeLevel,
HostID, CardId, TargetID, LUN, BlockSize, and MaxLBA. Performing an inquiry updates the serial number, code
level, and vendor id (This is useful after a code download). Performing a rdcap updates the blocksize and maxlba
fields (This is useful after changing the blocksize via a format).

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.68 device info blocksize

Command Name(s): device info blocksize
Description: This function returns the current blocksize for a device. This function does not issue a read_capacity
but instead relies on a previous call to read_capacity for the information. It is a good idea to execute a read_capacity

after formatting a device to a different blocksize to update this field.

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Blocksize from the dev selected before the last rescan
-prev Optional: Blocksize from the dev selected before the last rescan

D.69 device info channel

Command Name(s): device info channel
Description: This function returns the channel id for a device.

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

HGST Confidential 212

APPENDIX D. CIL COMMANDS

D.70 device info codelevel

Command Name(s): device info codelevel

Description: This function returns the code level for a device. This function does not perform an inquiry but
instead relies on a past inquiry for the information. Performing an appropriate inquiry will automatically update
the information. Is is generally a good idea to execute an inquiry command after performing a download and save
operation to update this field.

Default Parm Order: ?device_index? ?2uil_index? ?-full? ?-prev?

Parameters:
| Name | Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
—-full Optional: Full Codelevel
-prev Optional: Info from the dev selected before the last rescan

D.71 device info host

Command Name(s): device info host
Description: This function returns the host id of the current device.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:
Name \ Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.72 device info lun

Command Name(s): device info lun
Description: This function returns the LUN of the currently selected device.

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil_ index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

HGST Confidential 213

APPENDIX D. CIL COMMANDS

D.73 device info markersize

Command Name(s): device info markersize
Description: This function returns the stored HA Marker Size (MRKSZ) for the selected device.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:
Name \ Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.74 device info maxlba

Command Name(s): device info maxlba

Description: This function returns the stored maxlba for the current device. Note that this function does not
perform a read_capacity, therefore it is possible for the results of this command to be reformatted. Every time an
appropriate read_capacity is executed, however this field is automatically updated. If Niagara was started with a
drive spun down, this command may return a zero. Executing a read_capacity will correct the value automatically.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.75 device info mdata_inline

Command Name(s): device info mdata_inline
Description: This function returns whether the device has inline metadata.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil_ index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

HGST Confidential 214

APPENDIX D. CIL COMMANDS

D.76 device info mdata_size

Command Name(s): device info mdata_size
Description: This function returns the metadata size of a device.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:
Name \ Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.77 device info phy_blocksize

Command Name(s): device info phy_blocksize

Description: This function returns the current physical blocksize for a device. This function does not issue a
read_capacity 16 but instead relies on a previous call to read_capacity16 for the information. It is a good idea to
execute a read_capacity 16 after formatting a device to a different blocksize to update this field.

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name \ Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: PhyBlocksize from the dev selected before the last rescan
-prev Optional: PhyBlocksize from the dev selected before the last rescan

D.78 device info productid

Command Name(s): device info productid

Description: This function returns the stored product id for a device. Note that this command does not
perform an inquiry for the information but instead depends on a inquiry that was called when the CIL was started.
Performing an inquiry at any time will update the information returned by this command. Setting the device_index
to -1 will return the product id for the currently selected device on the UIL specified.

Default Parm Order: ?device_index? ?uil_index? ©?-dev? ?-uil? ?-prev?

Parameters:

HGST Confidential 215

APPENDIX D. CIL COMMANDS

Name \ Description

device_index | Optional: Device Index

uil_index Optional: UIL Index

-dev Optional: Device Index - This is also the 1st optional flag
—uil Optional: UIL Index - This is also the 2nd optional flag
-prev Optional: Info from the dev selected before the last rescan

D.79 device info protection

Command Name(s): device info protection
Description: This function returns true if end to end protection is enabled for the currently selected device.

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.80 device info protection_location

Command Name(s): device info protection_location
Description: This function returns the protection location of a device.

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name \ Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.81 device info protection_type

Command Name(s): device info protection_type

Description: Returns the protection type for a device. This is the protection type value defined in the SCSI
spec. It is equal to the value returned by rdcap16 + 1.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:

HGST Confidential 216

APPENDIX D. CIL COMMANDS

Name \ Description

device_index | Optional: Device Index

uil_index Optional: UIL Index

-prev Optional: Info from the dev selected before the last rescan

D.82 device info protocol

Command Name(s): device info protocol

Description: This function returns the protocol of a device (scsi or ata). This function does not issue an
inquiry for the information but instead relies on information stored from a previous inquiry for the information.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:
Name | Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.83 device info rto

Command Name(s): device info rto
Description: This function returns true if reference tag own is enabled for the currently selected device.

Default Parm Order: ?device_index? ?uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil_ index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.84 device info serial

Command Name(s): device info serial

Description: This function returns the stored serial number for a device. Note that this command does not
perform an inquiry for the information but instead depends on a inquiry that was called when the CIL was started.
Performing an inquiry at any time will update the information returned by this command. Setting the device_index
to -1 will return the serial for the currently selected device on the UIL specified.

Default Parm Order: ?device_index? ?uil_index? ?-dev? ?-uil? ?-prev?

HGST Confidential 217

APPENDIX D. CIL COMMANDS

Parameters:
Name \ Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-dev Optional: Device Index - This is also the 1st optional flag
—uil Optional: UIL Index - This is also the 2nd optional flag
-prev Optional: Info from the dev selected before the last rescan

D.85 device info serial_asic_version

Command Name(s): device info serial_asic_version
Description: This function returns the ASIC version of a device connected over serial.

Default Parm Order: ?>device_index? ?2uil_index? ?-prev?

Parameters:
Name | Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.86 device info target

Command Name(s): device info target
Description: This function returns the target ID of the current device.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.87 device info vendor

Command Name(s): device info vendor

Description: This function returns the vendor id for a device. This function does not issue an inquiry for the
information but instead relies on information stored from a previous inquiry for the information.

Default Parm Order: ?device_index? ?2uil_index? ?-prev?

HGST Confidential 218

APPENDIX D. CIL COMMANDS

Parameters:
Name Description
device_index | Optional: Device Index
uil index Optional: UIL Index
-prev Optional: Info from the dev selected before the last rescan

D.88 device info wwid

Command Name(s): device info wwid

Description: This function returns the stored wwid for a device. Note that this command does not perform an
inquiry for the information but instead depends on a inquiry that was called when the CIL was started. Performing
an inquiry at any time will update the information returned by this command. Setting the device_index to -1 will
return the WWID for the currently selected device on the UIL specified.

Default Parm Order: ?device_index? ?uil_index? ©?-dev? ?-uil? ?-prev?

Parameters:
Name Description
device_index | Optional: Device Index
uil_index Optional: UIL Index
—dev Optional: Device Index - This is also the 1st optional flag
-uil Optional: UIL Index - This is also the 2nd optional flag
-prev Optional: Info from the dev selected before the last rescan

D.89 device islocked

Command Name(s): device islocked

Description: This function returns 1 if a device is locked, 0 otherwise. A locked device returns a "Device
Locked" error to any commands directed at it.

Default Parm Order: index ?uil_index?

Parameters:
Name Description
index The index of the drive to query

uil_index | Optional: The index of the uil to use (if not the current)

D.90 device list

Command Name(s): device list

HGST Confidential 219

APPENDIX D. CIL COMMANDS

Description: This function returns a table of devices connected to the current uil. This table contains the
following information: index of device, vendor id,host id, card id, target id, LUN, maxlba of device, and the
blocksize of the device.

Default Parm Order: 2uil_index?

Parameters:

’ Name \ Description ‘

[uil_index [Optional: The index of the uil to use (if not the current) \

D.91 device lock

Command Name(s): device lock

Description: This function locks a device. A locked device return an error if any commands are sent to it.
This function is useful for protecting an internal drive or other non-testing device from accidental damage.

Default Parm Order: index ?uil_index?

Parameters:
Name \ Description
index The device index to lock

uil_index | Optional: The uil index to lock the device on

D.92 device lock serial

Command Name(s): device lock serial
Description: Locks a device based on the device serial number.
Default Parm Order: serial num ?uil_index?

Parameters:

Name \ Description

serial_num | The serial number of the drive to lock
uil_index Optional: The uil that the device is on (if not the current one)

D.93 device remove

Command Name(s): device remove

Description: This command removes a device from the device list. If the current device index is greater than
or equal to the removed device, it is decremented automatically. This command is not available for all drivers.

HGST Confidential 220

APPENDIX D. CIL COMMANDS

Default Parm Order: index

Parameters:

’ Name \ Description ‘

’ index \ Index of device to remove ‘

D.94 device rescan

Command Name(s): device rescan

Description: This function rescans the interface of the current UIL driver for new/removed devices. Note that
not all UIL drivers support device rescans.

Default Parm Order: 2uil_index?

Parameters:

’ Name \ Description ‘

[uil_index [Optional: The uil index to lock the device on \

D.95 device set allow_set_when_locked

Command Name(s): device set allow_set_when_locked
Description: Default is device is allowed to be set when locked.
Default Parm Order: on/off

Parameters:

’ Name \ Description ‘

[on/off [1toallow device to be set when locked, 0 to disallow \

D.96 device set blocksize

Command Name(s): device set blocksize

Description: This function sets the blocksize for the device. Normally this should be done using a read_capacity
cdb (which sets the parameter automatically). This command is provided for cases where the blocksize needs to
be explicitly set (such as during drive bringup).

Default Parm Order: blocksize

Parameters:

| Name | Description ‘

’ blocksize \ The blocksize to set the device to ‘

HGST Confidential 221

APPENDIX D. CIL COMMANDS

D.97 device set callback create

Command Name(s): device set callback create

Description: This function is used to set a callback for a particular command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "lock", "unlock", "rescan", "create",
"remove", and "set index". Each of these callbacks correspond to the associated device command. Note that in
the cases of lock, unlock, create, remove, and set index, the variable device_index and uil_index are set to provide
further information within the callback (rescan only sets uil_index). Also note that it is generally a good idea to

make sure a callback is unset before setting it yourself. To remove a callback, set it to "".
Default Parm Order: callback

Parameters:

[Name | Description ‘

| callback | Code to execute \

D.98 device set callback lock

Command Name(s): device set callback lock

Description: This function is used to set a callback for a particular command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "lock"”, "unlock”, "rescan", "create",
"remove", and "set index". Each of these callbacks correspond to the associated device command. Note that in
the cases of lock, unlock, create, remove, and set index, the variable device_index and uil_index are set to provide
further information within the callback (rescan only sets uil_index). Also note that it is generally a good idea to

make sure a callback is unset before setting it yourself. To remove a callback, set it to "".
Default Parm Order: callback

Parameters:

’ Name \ Description ‘

’ callback \ Code to execute ‘

D.99 device set callback remove

Command Name(s): device set callback remove

Description: This function is used to set a callback for a particular command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "lock", "unlock", "rescan", "create",
"remove", and "set index". Each of these callbacks correspond to the associated device command. Note that in
the cases of lock, unlock, create, remove, and set index, the variable device_index and uil_index are set to provide
further information within the callback (rescan only sets uil_index). Also note that it is generally a good idea to

make sure a callback is unset before setting it yourself. To remove a callback, set it to "".

Default Parm Order: callback

HGST Confidential 222

APPENDIX D. CIL COMMANDS

Parameters:

[Name | Description ‘

| callback | Code to execute \

D.100 device set callback rescan

Command Name(s): device set callback rescan

Description: This function is used to set a callback for a particular command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "lock", "unlock"”, "rescan", "create",
"remove", and "set index". Each of these callbacks correspond to the associated device command. Note that in
the cases of lock, unlock, create, remove, and set index, the variable device_index and uil_index are set to provide
further information within the callback (rescan only sets uil_index). Also note that it is generally a good idea to

make sure a callback is unset before setting it yourself. To remove a callback, set it to "".
Default Parm Order: callback

Parameters:

[Name | Description \

| callback | Code to execute \

D.101 device set callback ''set index"

Command Name(s): device set callback "set index"

Description: This function is used to set a callback for a particular command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "lock", "unlock"”, "rescan", "create",
"remove", and "set index". Each of these callbacks correspond to the associated device command. Note that in
the cases of lock, unlock, create, remove, and set index, the variable device_index and uil_index are set to provide
further information within the callback (rescan only sets uil_index). Also note that it is generally a good idea to

make sure a callback is unset before setting it yourself. To remove a callback, set it to "".
Default Parm Order: callback

Parameters:

’ Name \ Description ‘

| callback | Code to execute \

D.102 device set callback unlock

Command Name(s): device set callback unlock

Description: This function is used to set a callback for a particular command. Each time the command is

called, this callback is executed as code. Currently supported callbacks are "lock", "unlock", "rescan", "create",

HGST Confidential 223

APPENDIX D. CIL COMMANDS

"remove", and "set index". Each of these callbacks correspond to the associated device command. Note that in
the cases of lock, unlock, create, remove, and set index, the variable device_index and uil_index are set to provide
further information within the callback (rescan only sets uil_index). Also note that it is generally a good idea to

make sure a callback is unset before setting it yourself. To remove a callback, set it to "".
Default Parm Order: callback

Parameters:

[Name | Description \

| callback | Code to execute \

D.103 device set index

Command Name(s): device set index, dsi

Description: Each UIL object can generally access one or more devices. This function selects a device for a
particular uil. Note that a given UIL instance "remembers" its current device index so this command only applies
to the current uil. This command is generally used to communicate with multiple drives on a single bus/loop.

Default Parm Order: index ?uil?

Parameters:

Name Description

index | Index of Device
uil Optional: UIL to use

D.104 device set markersize

Command Name(s): device set markersize

Description: This function sets the HA Marker Size (MRKSZ) for the selected device. NOTE:This command
will overwrite the Niagara internal markersize value, but will not change the value on the actual device (as it is
read only).

Default Parm Order: markersize

Parameters:

[Name | Description ‘

| markersize | Marker size in bytes \

D.105 device set maxlba

Command Name(s): device set maxlba

HGST Confidential 224

APPENDIX D. CIL COMMANDS

Description: This function sets the maximum LBA for the device. Normally this should be done using a
read_capacity cdb (which sets the parameter automatically). This command is provided for cases where the max
Iba needs to be explicitly set (such as during drive bringup).

Default Parm Order: maxlba

Parameters:

’ Name \ Description ‘
| maxlba | Maximum LBA in blocks \

D.106 device set phy_blocksize

Command Name(s): device set phy_blocksize

Description: This function sets the physical blocksize for the device. Normally this should be done using
a read_capacity cdb (which sets the parameter automatically). This command is provided for cases where the
physical blocksize needs to be explicitly set (such as during drive bringup).

Default Parm Order: phy_blocksize

Parameters:

’ Name \ Description ‘

’ phy_blocksize \ The physical blocksize to set the device to ‘

D.107 device set protocol

Command Name(s): device set protocol

Description: This function sets the current device’s protocol. This is something that is set during a device
rescan. This is useful if you want certain tools to act a specific way depending on the device’s protocol. SuperCSO
is an example of that.

Default Parm Order: device_protocol

Parameters:

Name Description

device_protocol | The protocol to set the device to: scsi, ata, ahci, or unknown
device_protocol | The protocol to set the device to: scsi, ata, ahci, or unknown

D.108 device set read_xfer

Command Name(s): device set read_xfer

HGST Confidential 225

APPENDIX D. CIL COMMANDS

Description: This command (might) disable transfers to the current receive buffer. The intent of this function
is to allow application that are only concerned with maximum speed to disable the transfers in exchange for faster
command execution. Note that not all drivers support this function.

Default Parm Order: read _xfer state

Parameters:

’ Name \ Description ‘

’ read_xfer_state \ Set to one if on, O if off ‘

D.109 device set reserved

Command Name(s): device set reserved

Description: This command will get the reserved status of a device on a given interface at a given index. If
the device is reserved nothing other than Niagara can send I/O requests to the device. If no index is given then the
current device will be used.

Default Parm Order: reserve ?index?

Parameters:

Name Description

reserve | Bool used to reserve or release the device
index Optional: The index to reserve

D.110 device set serial

Command Name(s): device set serial
Description: This function will set a new serial number for the drive.
Default Parm Order: serial

Parameters:

’ Name \ Description ‘

| serial [The Serial Number in which you would like to set to the current drive \

D.111 device set timeout

Command Name(s): device set timeout

Description: This function sets a command timeout value for devices. Note that different UIL drivers support
different units for timeout values, not all allow timing to millisecond accuracy. Therefore after setting a timeout,
the actual timeout set is returned.

HGST Confidential 226

APPENDIX D. CIL COMMANDS

Default Parm Order: time ?-override_persistent?

Parameters:
Name Description
time Timeout in milliseconds
-override_persistent | Optional: Temporarily override the persistent timeouts set for each command. Use
0 to disable.
-override_persistent | Optional: Temporarily override the persistent timeouts set for each command. Use
0 to disable.

D.112 device set xfer mode

Command Name(s): device set xfer_mode

Description: Sets the transfer mode for the current driver, return error if not supported, O if hardware im-
plemented, 1 if software emulated. Available modes are: normal, hc, copy, random, random_hc, random_seed,
random_seed_keyed, keyed, keyed_hc, inc, inc_hc, repeat, repeat_hc, or repeat_read_hc. Note that for most
drivers (i-Tech), only read/write commands generate data from hardware.

Default Parm Order: mode ?seed?

Parameters:

[Name [Description

mode | The string representation of the mode
seed | Optional: Random Seek

D.113 device unlock

Command Name(s): device unlock

Description: This command unlocks a device. A locked device returns a "Device Locked" error if any CDBs
or other commands are sent to it.

Default Parm Order: index 2uil_index?

Parameters:
Name \ Description
index The index of the device to unlock

uil_index | Optional: The uil index to lock the device on

HGST Confidential 227

APPENDIX D. CIL COMMANDS

D.114 device unlock serial

Command Name(s): device unlock serial
Description: Unlocks a device based on the drive serial number.
Default Parm Order: serial_num ?uil_index?

Parameters:

Name \ Description

serial_num | The serial number of the drive to unlock
uil_index Optional: The uil that the device is on (if not the current one)

D.115 encode

Command Name(s): encode

Description: This function encrypts a TCL file, producing a <filename>.stc file. Once encrypted, the file
cannot be viewed or edited. The file can be executed with the esource command, however.

Default Parm Order: tcl_filename

Parameters:

[Name | Description \

’ tcl_filename \ tcl filename ‘

D.116 eparse

Command Name(s): eparse

Description: This function opens a special file that contains definition for CDBs/ATA commands and sense
data.

Default Parm Order: filename ?-dont_overwrite?

Parameters:
Name \ Description
filename Filename to parse

—dont_overwrite | Optional: Do not overwrite any previous commands of the same name
—dont_overwrite | Optional: Do not overwrite any previous commands of the same name

HGST Confidential 228

APPENDIX D. CIL COMMANDS

D.117 err_str

Command Name(s): err_str
Description: Converts the error code returned by the ec variable into a human readable string.
Default Parm Order: error code

Parameters:

| Name | Description \

’ error_code \ error code ‘

D.118 esource

Command Name(s): esource

Description: This version of source acts identical to TCL version except that it can also execute .stc files. A
.stc file is an encrypted TCL file created with the encode command.

Default Parm Order: filename

Parameters:

| Name | Description \

’ filename \ Tcl filename ‘

D.119 fcal abort_task_set

Command Name(s): fcal abort_task_set

Description: This function sends a low-level abort_task_set FCAL frame to the device. Clearly, this command
is intended for FCAL devices only.

Default Parm Order: 2o0x_id?

Parameters:

[Name | Description ‘

’ ox_id \ Optional: ox_id to us with command ‘

D.120 fcal abts

Command Name(s): fcal abts

Description: This function sends a low-level abort sequence FCAL frame to the device. Clearly, this com-
mand is intended for FCAL devices only.

HGST Confidential 229

APPENDIX D. CIL COMMANDS

Default Parm Order: <None>

D.121 fcal clear aca

Command Name(s): fcal clear_aca

Description: This function sends a low-level clear_aca FCAL frame to the device. Clearly, this command is
intended for FCAL devices only.

Default Parm Order: <None>

D.122 fcal clear task_set

Command Name(s): fcal clear_task_set

Description: This function sends a low-level clear_task_set FCAL frame to the device. Clearly, this command
is intended for FCAL devices only.

Default Parm Order: <None>

D.123 fcal lip_reset

Command Name(s): fcal lip_reset

Description: This function sends a LIP followed by a port and process login to all devices.Normally you
would want to use a device rescan instead of this command.

Default Parm Order: <None>

D.124 fcal port_login

Command Name(s): fcal port_login

Description: This function sends a low-level port_login FCAL frame to the device. Clearly, this command is
intended for FCAL devices only.

Default Parm Order: payload_size

Parameters:

| Name | Description \

’ payload_size \ New payload size ‘

D.125 fcal process_login

Command Name(s): fcal process_login

Description: This function sends a low-level process_login FCAL frame to the device. Clearly, this command
is intended for FCAL devices only.

HGST Confidential 230

APPENDIX D. CIL COMMANDS

Default Parm Order: <None>

D.126 fcal reset

Command Name(s): fcal reset

Description: This function sends a reset followed by a port and process login to all devices. Normally you
would want to use a device rescan instead of this command.

Default Parm Order: <None>

D.127 fcal target_reset

Command Name(s): fcal target_reset

Description: This function sends a low-level target_reset FCAL frame to the device. Clearly, this command
is intended for FCAL devices only.

Default Parm Order: <None>

D.128 fcal term_task

Command Name(s): fcal term_task

Description: This function sends a low-level term_task FCAL frame to the device.Clearly, this command is
intended for FCAL devices only.

Default Parm Order: <None>

D.129 feedback asynccqe

Command Name(s): feedback asynccge

Description: This function turns the output of asynchronus NVMe CQEs on/off.A zero value turns the CQE
display off, a non-zero value turns CQE output on.This function is used to make a trade-off between functionality
and output speed.

Default Parm Order: 2f1ag?

Parameters:

| Name | Description ‘
| f1ag | Optional: 0 to not show NVME CQEs, non-zero to show NVME CQEs \

D.130 feedback color

Command Name(s): feedback color

HGST Confidential 231

APPENDIX D. CIL COMMANDS

Description: This function turns embedded color on/off. A zero value turns embedded color on, non-zero
value turns color off. Note that this setting is only effective when using Niagara through an ANSI compatible
terminal. On other terminals, this option will add "garbage" characters to the display. The default setting for this
function is off. This setting is generally called in a startup script.

Default Parm Order: ?flag?

Parameters:

| Name | Description \

| flag | Optional: 0 turns off color, non zero turns on color \

D.131 feedback default

Command Name(s): feedback default

Description: This function sets the current feedback level to a known state. This setting sets maxlen=255,
showcmd=true, and showatafis=true.

Default Parm Order: <None>

D.132 feedback maxlen

Command Name(s): feedback maxlen

Description: This function changes the maximum number of buffer bytes returned by a command. Whenever
a command is called, the number of buffer bytes will be either the number actually returned, or the number
specified by this function, whichever is smaller. If a returned buffer prints less bytes than are returned, a ... is
printed at the end of the hex dump. This command is primarily used to make a trade-off between return verbosity
and speed. When trying to achieve maximum performance on high speed commands, set this value to zero for a
notable speed improvement.

Default Parm Order: 2length?

Parameters:

| Name | Description \
’ length \ Optional: Number of buffer bytes ‘

D.133 feedback min

Command Name(s): feedback min

Description: This function sets the maximum number of returned buffer bytes to zero and turns off CDB
output. The result is improved execution performance. Use this command to set Niagara for maximum speed.

Default Parm Order: <None>

HGST Confidential 232

APPENDIX D. CIL COMMANDS

D.134 feedback pop

Command Name(s): feedback pop
Description: This function pops the current state off the "feedback stack". This allows a user to store a feed-
back state and recall it. This command is useful for storing a feedback state before changing it for performance,

or other reasons.

Default Parm Order: <None>

D.135 feedback push

Command Name(s): feedback push

Description: This function pushes the current state off the "feedback stack". This allows a user to recall a
stored feedback state.

Default Parm Order: <None>

D.136 feedback showatafis

Command Name(s): feedback showatafis

Description: This function turns the output of the ATA return FIS on/off. A zero value turns the FIS display
off, a non-zero value turns FIS output on. This function is used to make a trade-off between functionality and
output speed.

Default Parm Order: 2flag?

Parameters:

| Name | Description

flag | Optional: 0 to not show ATA return FIS, non-zero to show ATA return FIS
flag | Optional: O to not show ATA return FIS, non-zero to show ATA return FIS

D.137 feedback showcdb

Command Name(s): feedback showcdb

Description: This function turns the output of the CDB/ATA command on/off. A zero value turn the CDB
display off, a non-zero value turns CDB output on. This function is used to make a (slight) trade-off between
functionality and output speed.

Default Parm Order: 2flag?

Parameters:

HGST Confidential 233

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘

| £1ag | Optional: 0 to not show cdb, non-zero to show CDB \

D.138 feedback showcqe

Command Name(s): feedback showcge

Description: This function turns the output of the NVMe Completion Queue entry on/off.A zero value turns
the CQE display off, a non-zero value turns CQE output on.This function is used to make a trade-off between
functionality and output speed.

Default Parm Order: 2flag?

Parameters:

’ Name \ Description ‘
’ flag \ Optional: 0 to not show NVMe CQEs, non-zero to show NVMe CQE ‘

D.139 get_cil_list

Command Name(s): get_cil_list
Description: Return a list of all CIL commands, listed in the order that the command was created.

Default Parm Order: <None>

D.140 get_kcq_str

Command Name(s): get_kcqg_str
Description: This command returns the full descriptive error string associated with the specified kcq value.
Default Parm Order: kcqg

Parameters:

’ Name \ Description ‘

[keg | KCQ value to get matching error string \

D.141 init

Command Name(s): init
Description: No Description Given.

Default Parm Order: <None>

HGST Confidential 234

APPENDIX D. CIL COMMANDS

D.142 niagara_log_puts

Command Name(s): niagara_log_puts

Description: This function will log a message to the Niagara log file which can be useful in debugging
problemsshould they arise.

Default Parm Order: message

Parameters:

| Name | Description \

| message | Message to log to the Niagara log ‘

D.143 nvme dump_cq

Command Name(s): nvme dump_cqg

Description: This function dumps the current head, tail, size, and contents of a completion queue.If all’ is
specified, it dumps every completion queue owned by this controller, orthe controller associated with the selected
namespace.

Default Parm Order: gid

Parameters:

’ Name \ Description ‘

[gid | Queue ID to dump \

D.144 nvme dump_sq

Command Name(s): nvme dump_sqg

Description: This function dumps the current head, tail, size, and contents of a completion queue.If all’ is
specified, it dumps every completion queue owned by this controller, orthe controller associated with the selected
namespace.

Default Parm Order: gid

Parameters:

’ Name \ Description ‘

’ gid \ Queue ID to dump ‘

HGST Confidential 235

APPENDIX D. CIL COMMANDS

D.145 nvme get callback reset

Command Name(s): nvme get callback reset

Description: This function returns the callback mapped to a specific device command. Callbacks are code
segments that are automatically called whenever a command is executed. Currently supported callbacks are reset.

Default Parm Order: <None>

D.146 nvme get cq_ids

Command Name(s): nvme get cq_ids

Description: This function returns a list of completion queue ids that currently exist for the selected controller,
or the controller associated with the selected namespace.

Default Parm Order: <None>

D.147 nvme get last_cid

Command Name(s): nvme get last_cid

Description: This function returns the command ID (CID) of the last completion entry received by the driver.
It may be helpful to turn off asynchronus events, otherwise the "last" completion entry may not be for the com-
mand that was just issued.

Default Parm Order: <None>

D.148 nvme get last_dword

Command Name(s): nvme get last_dword

Description: This function returns the specified dword of the last completion entry received by the driver. It
may be helpful to turn off asynchronus events, otherwise the "last" completion entry may not be for the command
that was just issued.

Default Parm Order: dword

Parameters:

[Name | Description ‘

| dword [Dword to gather ‘

D.149 nvme get last_dword(

Command Name(s): nvme get last_dword0

HGST Confidential 236

APPENDIX D. CIL COMMANDS

Description: This function returns the first dword of the last completion entry received by the driver. It may
be helpful to turn off asynchronus events, otherwise the "last" completion entry may not be for the command that
was just issued.

Default Parm Order: <None>

D.150 nvme get last_dword1

Command Name(s): nvme get last_dwordl

Description: This function returns the second dword of the last completion entry received by the driver. It
may be helpful to turn off asynchronus events, otherwise the "last" completion entry may not be for the command
that was just issued.

Default Parm Order: <None>

D.151 nvme get last_err_logpage

Command Name(s): nvme get last_err_logpage

Description: This function returns the last error log page. This is set when the more bit is set in a completion
queue entry.

Default Parm Order: <None>

D.152 nvme get last_status

Command Name(s): nvme get last_status

Description: This function returns the status code and status code type of the last completion queue entry
received by the driver. It may be helpful to turn off asynchronus events, otherwise the "last" completion entry may
not be for the command that was just issued.

Default Parm Order: <None>

D.153 nvme get page_size

Command Name(s): nvme get page_size

Description: This function returns the memory page size (in bytes) for the selected controller, or the controller
associated with the selected namespace.

Default Parm Order: <None>

D.154 nvme get register

Command Name(s): nvme get register

HGST Confidential 237

APPENDIX D. CIL COMMANDS

Description: This function reads a specified register. The registers can be referended byname (CAP, VS, CC,
CSTS, AQA, ASQ, ACQ), or by address.

Default Parm Order: reg

Parameters:

| Name | Description \

[reg | Register to get \

D.155 nvme get sq_ids

Command Name(s): nvme get sqg_ids

Description: This function returns a list of submission queue ids that currently exist for the selected controller,
or the controller associated with the selected namespace.

Default Parm Order: <None>

D.156 nvme reset

Command Name(s): nvme reset

Description: This function performs either a NVM subsystem reset, a controller reset, or a shutdown on the
device. A controller reset with the shutdown_type specified will shutdown the controller before resetting it. Valid

non_n

reset types are "controller” and "nvm". "c" and "n" are also accepted.

Default Parm Order: type ?shutdown_type? ?-no_reenable? ?-timeout?

Parameters:
Name Description
type The type of reset to perform

shutdown_type | Optional: Used to perform a normal/abrupt shutdown as part of the reset
shutdown_type | Optional: Used to perform a normal/abrupt shutdown as part of the reset
-no_reenable Optional: Do not attempt to re-enable the device

—timeout Optional: Set the timeout (ms) value for the command

D.157 nvme set callback reset

Command Name(s): nvme set callback reset

Description: This function is used to set a callback for a particular command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "reset". Each of these callbacks
correspond to the associated nvme command. Note that it is generally a good idea to make sure a callback is unset

before setting it yourself. To remove a callback, set it to "".

Default Parm Order: callback

HGST Confidential 238

APPENDIX D. CIL COMMANDS

Parameters:

[Name | Description \

| callback | Code to execute \

D.158 nvme set page_size

Command Name(s): nvme set page_size

Description: This function sets the memory page size (in bytes) for the selected controller, or the controller
associated with the selected namespace. This value is used for PRP entry size and will result in a controller reset.

Default Parm Order: size

Parameters:

’ Name \ Description ‘

| size | page size (in bytes) to set for controller. Valid Options: 4k/8k \

D.159 nvme set register

Command Name(s): nvme set register

Description: This function attempts to set a given NVMe register to a given value. The register can be
specified by name, or as an offset and a mask.

Default Parm Order: reg data ?mask?

Parameters:

Name | Description ‘

reg The register to set

data | The value to

mask | Optional: Mask to use when setting the register. Only used when a bar offset is
given.

mask | Optional: Mask to use when setting the register. Only used when a bar offset is
given.

D.160 parse

Command Name(s): parse

Description: This function opens a special file that contains definition for CDBs/ATA commands and sense
data.

Default Parm Order: filename ?-dont_overwrite?

HGST Confidential 239

APPENDIX D. CIL COMMANDS

Parameters:
Name Description
filename Filename to parse

—dont_overwrite | Optional: Do not overwrite any previous commands of the same name
—-dont_overwrite | Optional: Do not overwrite any previous commands of the same name

D.161 pcie get config

Command Name(s): pcie get config
Description: This function reads the PCle config space for a given offset and size.
Default Parm Order: offset length

Parameters:

Name \ Description

offset | Offset to read from
length | Length of the read. Valid lengths are 1, 2, and 4.

D.162 pcie set config

Command Name(s): pcie set config
Description: This function writes the PCle config space for a given offset and size.
Default Parm Order: offset length data

Parameters:

Name \ Description
offset | Offset to write to

length | Length of the write. Valid lengths are 1, 2, and 4.
data Data to write

D.163 perfent clicks

Command Name(s): perfcnt clicks

Description: This function functions like [clock clicks] but returns value in microseconds instead of millisec-
onds. See also: perfcnt count, perfent freq.

Default Parm Order: <None>

HGST Confidential 240

APPENDIX D. CIL COMMANDS

D.164 perfcnt count

Command Name(s): perfcnt count

Description: Result is given in a list of [HighPart, LowPart], with the HighPart given in seconds. See also:
perfent freq, perfent clicks.

Default Parm Order: <None>

D.165 perfcnt delay

Command Name(s): perfcnt delay
Description: Delay is performed using a high resolution timer. See also: perfcnt count, perfent clicks.
Default Parm Order: usecs_to_delay

Parameters:

’ Name \ Description ‘

[usecs_to_delay | Microseconds to delay \

D.166 perfcnt freq

Command Name(s): perfcnt freqg

Description: Result is given in list of [HighPart, LowPart]. Most likely ticks per seconds will not exceed the
LowPart. See also: perfcnt count, perfent clicks.

Default Parm Order: <None>

D.167 pqi dump_iq

Command Name(s): pgi dump_ig

Description: This function dumps the current PI, CI, size, and contents of an inbound queue. If ’all’ is
specified, it dumps every inbound queue related to this device.

Default Parm Order: gid

Parameters:

[Name [Description \

’ gid \ Queue ID to dump ‘

HGST Confidential 241

APPENDIX D. CIL COMMANDS

D.168 pqi dump_oq

Command Name(s): pgi dump_oqg

Description: This function dumps the current PI, CI, size, and contents of an outbound queue. If ’all’ is
specified, it dumps every completion queue owned by this controller, orthe controller associated with the selected
namespace.

Default Parm Order: qgid

Parameters:

[Name | Description ‘

[gid [Queue ID to dump \

D.169 pqi get register

Command Name(s): pgi get register
Description: This function reads a given PQI register. The register offset must be dword aligned.
Default Parm Order: reg

Parameters:

’ Name \ Description ‘

’ reg \ Register offset to use ‘

D.170 pqi set register

Command Name(s): pgi set register

Description: This function attempts to set a given PQI register to a given value. The register offset must be
dword aligned.

Default Parm Order: reg data mask

Parameters:

[Name | Description

reg The register to set
data | The value to write
mask | Mask to use when setting the register.

HGST Confidential 242

APPENDIX D. CIL COMMANDS

D.171 (qctl get auto_incr

Command Name(s): gctl get auto_incr

Description: This function returns a 1 if auto tag increment is enabled, zero otherwise.If auto tag increment is
on, the tag_id sent with command is incremented by one each time a command is sent. See also: qctl set auto_incr,
qctl set tag_id.

Default Parm Order: <None>

D.172 qctl get ignore_queue_full

Command Name(s): gctl get ignore_queue_full

Description: The ignore_queue_full bit decides whether to report an error message if the current queue depth
exceeds the maximum queue depth. A value of "1’ disables the Queue Full error message report.

Default Parm Order: <None>

D.173 qctl get max_depth

Command Name(s): gctl get max_depth

Description: This function returns the current setting for the maximum queue depth. See also: qctl set
max_depth.

Default Parm Order: 2sq? ?-driver_max? ?sg?

Parameters:
’ Name \ Description
sq Optional: Return the depth of a specific submission queue
-driver_max | Optional: Return the driver’s max queue depth instead of the current max queue
depth
—driver_max | Optional: Return the driver’s max queue depth instead of the current max queue
depth
sq Optional: Only send a specific submission queue’s commands

D.174 qctl get num_queued

Command Name(s): gct1l get num_queued

Description: This function returns the number of commands that have been issued, but haven’t had status
returned.

Default Parm Order: ?>sq? ?-all?

Parameters:

HGST Confidential 243

APPENDIX D. CIL COMMANDS

Name \ Description

sq Optional: Return the number of commands of a specific submission queue
sq Optional: Return the number of commands of a specific submission queue
—all | Optional: Returns number of commands of all submission queues

D.175 (qctl get num_waiting

Command Name(s): gctl get num_waiting

Description: This function returns the number of queued commands that have returned status.This function
is useful for determining an estimation of realized queue depth. See also: gqmode concurrent, gmode stacked.

Default Parm Order: 2device?

Parameters:

[Name | Description ‘

[device | Optional: Device to recieve from ‘

D.176 qctl get tag_type

Command Name(s): gctl get tag_type

Description: This function returns the current queue tag type. Types include simple, ordered and head. See
also: qctl set tag_type.

Default Parm Order: <None>

D.177 qctl idx_info

Command Name(s): gctl idx_info

Description: This function returns status information for a specified queue index. When "qctl recv all" is
called, queue entries are placed in an internal table.This function is one of the way to examine the contents of the
table. See also: qctl recv all, qctl table_info, qctl tag_info.

Default Parm Order: index ?-1ist?

Parameters:

Name Description

index | Index of command (ordered by reply from device)
-1list | Optional: Output results in a list structure

D.178 (qctl recv

Command Name(s): gctl recv

HGST Confidential 244

APPENDIX D. CIL COMMANDS

Description: This function waits for and retrieves the next available command from the device. Status on the
commands success is returned See also: qctl recv all, qctl recv tag.

Default Parm Order: 2device?

Parameters:

’ Name \ Description ‘

’ device \ Optional: Device to recieve from ‘

D.179 (qctl recv all

Command Name(s): gctl recv all

Description: Waits for and retrieves all outstanding commands from the device. Returns successif all com-
mands were completed successfully or an error if any commands did not. Commands results are placed in a table

non

that can be parsed with the "qctl idx_info","qctl tag_info", and "qctl table_info" commands. See also: qctl recv,
qctl recv tag.

Default Parm Order: <None>

D.180 qctl recv tag

Command Name(s): gctl recv tag

Description: This function waits for and retrieves commands from the current device until the tag id is
received. Returns success if all commands up to and including <tag id> were successful andan error if any were
not. See also: qctl set tag_id,qctl recv, qctl recv all.

Default Parm Order: tag_id ?device?

Parameters:

Name \ Description

tag_id | TagID to wait for
device | Optional: Device to recieve from

D.181 (ctl send

Command Name(s): gctl send
Description: This function sends an internal table of commands that were built up in stacked/pcie queuing
mode to a device. This command cannot be used in concurrent mode. See also: gqmode stacked, gmode concurrent,

gmode info, gmode pcie, init, qctl recv.

Default Parm Order: <None>

HGST Confidential 245

APPENDIX D. CIL COMMANDS

D.182 qctl set auto_incr

Command Name(s): gctl set auto_incr

Description: This function turns tag_id auto increment on/off. When auto increment is on, the tag_id will
automatically increment by 1 every time a command is send. Normally you want this setting on for convenience.
See also: qgctl set tag_id, qctl get auto_incr.

Default Parm Order: auto_incr

Parameters:

| Name | Description ‘

’ auto_incr \ Zero turn off auto increment, non zero turns it on ‘

D.183 (qctl set ignore_queue_full

Command Name(s): gctl set ignore_gqueue_full

Description: This function enables or disables QUEUE FULL error. The default setting is *0’, if the queue
buffer exceeds the max queue depth, a QUEUE_FULL error message will be returned. If sets to ’1°, the driver
ignores any potential risk of sending too many commands to the HBA and will alow you to send as many com-
mands as you like without error. Please be warned that this is an ADVANCED setting and you must make sure
your queue depth does not exceed the maximum queue depth supported or you may experience an HBA hang.

Default Parm Order: on/off

Parameters:

’ Name \ Description ‘

’ on/off \ 1 to turn ignore_queue_full. O to turn ignore_queue_full off ‘

D.184 (ctl set max_depth

Command Name(s): gctl set max_depth

Description: This function tests a queuing depth to see if it is supported and makes any setting changes
required to support the depth. Note that the default queuing depth may be deeperthan the depth specified. This
command only guarantees that thecurrent queuing depth is at least that specified, the actual depth may be deeper.
See also: qctl get max_depth.

Default Parm Order: max_depth ?sqg?

Parameters:

Name \ Description

max_depth | Maximum Queue Depth
sq Optional: Sets the depth of a given submission queue

HGST Confidential 246

APPENDIX D. CIL COMMANDS

D.185 (ctl set next_tag

Command Name(s): gctl set next_tag

Description: This function is used to explicitly set the tag_id of the next command. In most cases, "qctl set
auto_incr 1" is a more convenient approach to handling tag ids. See also: gctl set auto_incr.

Default Parm Order: tag_id

Parameters:

[Name [Description \

| tag_id | TagID of next tag \

D.186 qctl set tag_type

Command Name(s): gctl set tag_type

Description: This function sets the tag type of commands that follow. Options for the type include simple,
ordered and head. See also: gmode concurrent, gmode stacked, qctl get tag_type.

Default Parm Order: tag_type

Parameters:

’ Name \ Description ‘

’ tag_type \ simple, ordered or head ‘

D.187 (ctl table_info

Command Name(s): gctl table_info

Description: This function returns a table describing the status of commands returnedby "qctl recv all". Using
the -list option, the format is one that is easy to parse. Otherwise the format is one that is easy to read. See also:
qctl recv all, qctl idx_info, qctl tag_info.

Default Parm Order: 2>-1ist?

Parameters:

’ Name \ Description ‘

’ -list \ Optional: Output results in a list structure ‘

HGST Confidential 247

APPENDIX D. CIL COMMANDS

D.188 (ctl tag_info

Command Name(s): gctl tag_info

Description: This function returns information for a specified tag. When the "qctl recv all" commandis used,
results of the commands are placed in an internal table. This funcition allow information for a specific tag to be
extracted from the table. See also: qctl recv all, qctl idx_info, qctl table_info.

Default Parm Order: tag_id ?-1ist?

Parameters:

Name \ Description

tag_id | Tag ID of command
-list Optional: Output results in a list structure

D.189 gmode concurrent

Command Name(s): gnode concurrent

Description: This function places Niagara in concurrent queuing mode. In this mode, Niagara does not wait
for commands to return status before returning control to the user. When status is needed, it is retrieved using
a "qctl recv" command. Return to normal mode with a "qmode disable" command. See also: qmode stacked,
gmode info, gmode disable, qctl recv, init.

Default Parm Order: ?depth?

Parameters:

’ Name \ Description ‘

| depth | Optional: Maximum queue depth (default is 16) \

D.190 gmode disable

Command Name(s): gnode disable

Description: This function puts the current UIL in normal (non-queued) mode. In this mode commands to
the drive wait for status (or time out) before returning control to the user. See also: gmode concurrent, qmode
info, init.

Default Parm Order: <None>

D.191 gmode info

Command Name(s): gmode info

Description: This function returns Niagara’s current queuing mode. Possible modes are disabled, concurrent,
stacked, and pcie. See also: qmode concurrent, qmode disable, qmode stacked, qmode pcie, init.

HGST Confidential 248

APPENDIX D. CIL COMMANDS

Default Parm Order: <None>

D.192 gmode pcie

Command Name(s): gnode pcie
Description: This function puts the current UIL into pcie queuing mode. In this mode, commands are placed
into the 10 submission queue specified by the -sq flag or into the last IO submission queue that received a com-

mand. They can be issued as a group with a "qctl send" command. Completion queues are not checked or emptied
until a "qctl recv" command is issued.

Default Parm Order: 2>depth?

Parameters:

Name \ Description ‘

depth | Optional: Maximum allowed waiting commands per queue (default is SQ size)
depth | Optional: Maximum allowed waiting commands per queue (default is SQ size)

D.193 gmode stacked

Command Name(s): gnode stacked

Description: This function puts the current UIL into stacked queuing mode. In this mode, commands are
stacked in memory and then sent to the drive as fast as possible with a "qctl send" command. This mode is
generally used to try and force a deep queue depthSee also: gmode concurrent, qmode info, qmode disable,
gmode pcie, init.

Default Parm Order: ?depth?

Parameters:

’ Name \ Description ‘

’ depth \ Optional: Maximum queue depth (default is 16) ‘

D.194 rand

Command Name(s): rand
Description: This function generates a random, unsigned float in the range of [0.0:1.0]. An optional random
channel can be specified (which can contain optional histogram information). If histogram information is pro-

vided, the range returned will be influenced by histogram information. If no channel is specified, channel 0 is
used. - See Also: rand open, rand int, rand addhist, rand range, rand frange.

Default Parm Order: ?channel?

Parameters:

HGST Confidential 249

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘

[channel | Optional: ID of the random channel to use (default=0) \

See Also: : rand open (page ??), rand int (page251), rand addhist (page 250), (page ??)

D.195 rand addhist

Command Name(s): rand addhist

Description: This function defines a histogram entry for an open random channel. When a random number
is generated, this entry will be used to predict the numbers value the specified percentage of the time. You can
stack up to 32 histogram entrys per random generator. Note that once your added histogram entrys total 100
percent or above, adding further entrys will cause the least likely entrys in the histogram to never take effect (the
most likely entrys will always consume the 100% range, leaving extra entrys with a zero percent chance of being
used). If your histogram entries total to less than 100 percent, the default range (which varies per command) is
used for the remaining percentage. Another important thing to note is that, if you define a histogram range that
is outside of a particular commands (rand int, rand double, rand range, etc) range limit, an error will result. It is
your responsibility to ensure that your histogram ranges are appropriate for the commands you are using. - See
Also: rand showhist, buff fill rand, randlba, rand int, rand addhist, rand float, rand range, rand frange, rand open.

Default Parm Order: channel min max percentage

Parameters:
Name Description
channel ID of open random channel (from rand open)
min The minimum range of the histogram entry
max The maximum range of the histogram entry
percentage | The percentage that the histogram entry is used

See Also: : (page ??)
D.196 rand close

Command Name(s): rand close

Description: This function closes a random channel opened with the "rand open" function and frees resources
associated with the random channel. You can not close channel 0. Because the number of random channels is
limited (1024), you should always close a random channel when finished with it. - See Also: rand open, rand int,
rand addhist, rand float, rand range, rand frange, rand seed.

Default Parm Order: channel

Parameters:

’ Name \ Description ‘

[channel | ID of the random channel to output histogram for \

HGST Confidential 250

APPENDIX D. CIL COMMANDS

See Also: : rand (page ??)

D.197 rand float

Command Name(s): rand float
Description: This function generates a random, unsigned float in the range of [0.0:1.0]. An optional random
channel can be specified (which can contain optional histogram information). If histogram information is pro-

vided, the range returned will be influenced by histogram information. If no channel is specified, channel 0 is
used. - See Also: rand open, rand int, rand addhist, rand range, rand frange.

Default Parm Order: 2>channel?

Parameters:

’ Name \ Description ‘

’ channel \ Optional: ID of the random channel to use (default=0) ‘

See Also: : rand open (page ??), rand int (page 251), rand addhist (page 250), (page ??)

D.198 rand frange

Command Name(s): rand frange

Description: This function generates a random, floating point number between [min:max]. An optional
random channel can be specified. If no channel is specified, channel 0 is used. The formula used to determine the
range is equivalent to: expr ([rand float]*($max-$min)) + $min. When using histograms with this command, it
is generally clearer to define your histogram ranges between 0.0 and 1.0. All histogram ranges are applied to the
formula given above. An alternative to this command is to simply bound the random range of a channel with the
"rand addhist" command. - See Also: rand open, rand int, rand addhist, rand range.

Default Parm Order: min max ?channel?

Parameters:
Name Description
min Minimum float value
max Maximum float value

channel | Optional: ID of the random channel to use (default=0)

See Also: : rand open (page ??), rand int (page 251), rand (page 249)

D.199 rand int

Command Name(s): rand int

HGST Confidential 251

APPENDIX D. CIL COMMANDS

Description: This function generates a random, unsigned integer between 0 and OxXFFFFFFFF. An optional
random channel can be specified (which can contain optional histogram information). If no channel is specified,
channel O is used. - See also: rand open, rand float, rand addhist, rand range, rand frange.

Default Parm Order: ?channel?

Parameters:

’ Name \ Description ‘

[channel | Optional: ID of the random channel to use (default=0) \

D.200 rand open

Command Name(s): rand open

Description: This Function creates a new random number generator channel. This channel can be used in
commands like "randlba" and "buff fill rand" as well as any of the rand commands. This command returns a
"handle" to the generator which can be used by the associated commands - See Also: buff fill rand, randlba, rand
close, rand int, rand addhist, rand float, rand range, rand frange, rand seed.

Default Parm Order: ?seed?

Parameters:

’ Name \ Description ‘

| seed | Optional: The starting random seed (integer) \

See Also: : buff fill rand (page ??), (page ??)

D.201 rand range

Command Name(s): rand range

Description: This function generates a random, unsigned integer between [min:max]. An optional random
channel can be specified. If no channel is specified, channel O is used. The formula used to determine the range
is equivalent to: expr ([rand int]%($max-$min + 1)) + $min. It is generally not recommended that histogram
random channels be used in combination with this command (this is not generally a problem since you can define
ranges within the histogram itself). Histogram ranges outside of those asked for with this command are applied
to the formula given above. This can lead to confusing results. An alternative to this command is to simply bound
the random range of a channel with the "rand addhist" command. - See Also: rand open, rand float, rand addhist,
rand frange.

Default Parm Order: min max ?channel?

Parameters:

HGST Confidential 252

APPENDIX D. CIL COMMANDS

Name \ Description

min Minimum integer value

max Maximum integer value

channel | Optional: ID of the random channel to use (default=0)

See Also: : rand open (page ??), rand float (page251), rand (page 249)

D.202 rand seed

Command Name(s): rand seed

Description: This funciton seeds a random channel. The seed value is an integer ranging from 0-OxFFFFFFFF.
Is no channel is specified, channel zero is seeded - See Also: rand open, rand int, rand float, rand range, rand
frange.

Default Parm Order: chanSeed ?channel?

Parameters:

Name \ Description

chanSeed | Seeds a random channel
channel Optional: ID of the random channel to seed (default is 0)

See Also: : rand open (page??), rand int (page251), rand float (page251), rand range
(page 252), rand frange (page 251)

D.203 rand showhist

Command Name(s): rand showhist

Description: This function outputs the histogram settings for an existing random channel. Note that the
histogram entries may be in a different order than they were added. This happens because the rand addhist
command orders the histogram entries for optimal performance - See Also: rand open, rand addhist.

Default Parm Order: channel

Parameters:

| Name | Description \

’ channel \ ID of the random channel to output histogram for ‘

See Also: : rand open (page??), rand addhist (page 250)

HGST Confidential 253

APPENDIX D. CIL COMMANDS

D.204 randlba

Command Name(s): randlba

Description: This command provides a convenient way to produce a random lba. The lba produced will be
somewhere between zero and "maxlba - maxblk". An optional random channel can be specified.

Default Parm Order: ?maxblk? ?channel?

Parameters:

Name Description

maxblk Optional: Maximum number of blocks that will be read
channel | Optional: Random channel to use (default=0)

D.205 sas abort_task set

Command Name(s): sas abort_task_set

Description: This function sends a low-level abort_task_set SAS frame to the device. Clearly, this command
is intended for SAS devices only.

Default Parm Order: 2ox_id?

Parameters:

[Name | Description ‘

[ox_id | Optional: ox_id to use with this command \

D.206 sas clear_aca

Command Name(s): sas clear_aca

Description: This function sends a low-level clear_aca SAS frame to the device. Clearly, this command is
intended for SAS devices only.

Default Parm Order: <None>

D.207 sas clear_task set

Command Name(s): sas clear_task_set

Description: This function sends a low-level clear_task_set SAS frame to the device. Clearly, this command
is intended for SAS devices only.

Default Parm Order: <None>

HGST Confidential 254

APPENDIX D. CIL COMMANDS

D.208 sas get_pod_address

Command Name(s): sas get_pod_address
Description: Gets SAS pod Address for current device.
Default Parm Order: <None>

D.209 sas get_sas_address

Command Name(s): sas get_sas_address
Description: Gets SAS Address for current device.

Default Parm Order: <None>

D.210 sas get_speed

Command Name(s): sas get_speed
Description: Returns the current speed of the SAS bus. This could be 1.5, 3.0, or 6.0 Gbs.

Default Parm Order: <None>

D.211 sas link reset

Command Name(s): sas link_reset
Description: Mode page 0, byte 4 indicates whether this is enabled or not.
Default Parm Order: <None>

D.212 sas lun_reset

Command Name(s): sas lun_reset

Description: This function sends a logical unit reset SAS task to the device. It waits up to 2 seconds for a
response, but it does not verify that good status was received back.

Default Parm Order: <None>

D.213 sas nexus_reset

Command Name(s): sas nexus_reset

Description: Performs a SAS I-T Nexus reset sequence to a specific LUN. The optional LUN value has a
default for LUN 0.

Default Parm Order: ?1un?

HGST Confidential 255

APPENDIX D. CIL COMMANDS

Parameters:

| Name | Description \
[lun [Optional: LUN \

D.214 sas notify

Command Name(s): sas notify

Description: Sends NOTIFY (ENABLE SPINUP) SAS primitive to allow automatic unit start. Mode page 0,
byte 4 indicates whether this is enabled or not.

Default Parm Order: <None>

D.215 sas notify_epow

Command Name(s): sas notify_epow
Description: Sends a SAS Notify (Power Loss Expected), or EPOW Notify, triple primitive.
Default Parm Order: <None>

D.216 sas phy_reset

Command Name(s): sas phy_reset
Description: Performs a SAS phy reset sequence (link reset minus sending identify).

Default Parm Order: <None>

D.217 sas power_manage

Command Name(s): sas power_manage

Description: Sets the SAS Power Management for the current device to either full, partial, or slumber. No
parameter willquery the current power management state.

Default Parm Order: ?mode?

Parameters:

| Name | Description ‘

[mode [Optional: either "full", "partial”, or "slumber" \

D.218 sas query_async_event

Command Name(s): sas query_async_event

HGST Confidential 256

APPENDIX D. CIL COMMANDS

Description: Sends a Query Asynchronous Event TMF (formerly known as Query Unit Attention).
Default Parm Order: <None>

D.219 sas query_task_set

Command Name(s): sas query_task_set
Description: Sends a Query Task Set TMF.

Default Parm Order: <None>

D.220 sas reset

Command Name(s): sas reset

Description: This performs a SAS hard reset sequence. Normally you would want to use a device rescan
instead of this command.

Default Parm Order: <None>

D.221 sas set_sas_address

Command Name(s): sas set_sas_address

Description: Sets the SAS Address for the current device. Current device from device get index. The SAS
Address top byte is always 0x50. User specifies next seven bytes.

Default Parm Order: address_bytel address_byte2 address_byte3 address_byte4 address_byte5
address_byte6 address_byte?7

Parameters:

Name \ Description

address_bytel | 1 of 7 bytes that will make up the address
address_byte2 | 2 of 7 bytes that will make up the address
address_byte3 | 3 of 7 bytes that will make up the address
address_byted | 4 of 7 bytes that will make up the address
address_byte5 | 5 of 7 bytes that will make up the address
address_byte6 | 6 of 7 bytes that will make up the address
address_byte7 | 7 of 7 bytes that will make up the address

D.222 sas set_speed

Command Name(s): sas set_speed
Description: Sets the speed of the SAS interface (0 = autodetect, 1 = 1.5 Gbps, 3 = 3.0 Gbps, 6 = 6.0 Gbps).

Default Parm Order: speed

HGST Confidential 257

APPENDIX D. CIL COMMANDS

Parameters:

[Name | Description \

| speed | Interface speed \

D.223 sata comreset

Command Name(s): sata comreset

Description: This command will send a COM reset to the current port and hold it for the specified time. If the
-ns switch is present, time will interpreted in nanoseconds, and if the switch is not present, time will be interpreted
in seconds. If time is not specified, a default of 10 milliseconds is assumed.

Default Parm Order: 2-ns? ?time?

Parameters:

’ Name \ Description

-ns Optional: Treats time as nanosecond delay
time | Optional: Time to hold comreset

D.224 sata get

Command Name(s): sata get

Description: This command will read and display info on the desired part of an ata device. Append sata get
with a command below to get the info.

Default Parm Order: status error control active

Parameters:

Name Description

status Status Register
error Error Register
control | Control Register
active Active Register

D.225 sata get active

Command Name(s): sata get active
Description: No Description Given.

Default Parm Order: <None>

HGST Confidential 258

APPENDIX D. CIL COMMANDS

D.226 sata get control

Command Name(s): sata get control
Description: No Description Given.
Default Parm Order: <None>

D.227 sata get error

Command Name(s): sata get error
Description: No Description Given.

Default Parm Order: <None>

D.228 sata get status

Command Name(s): sata get status
Description: No Description Given.

Default Parm Order: <None>

D.229 sata get_auto_tags

Command Name(s): sata get_auto_tags

Description: This command will return whether the driver should automatically choose a free tag for NCQ
commands.

Default Parm Order: <None>

D.230 sata get_clear_ncq_err

Command Name(s): sata get_clear_ncqg err
Description: This command will return whether the driver should automatically clear a NCQ command error.
Default Parm Order: <None>

D.231 sata get_speed

Command Name(s): sata get_speed
Description: Gets the speed of SATA Drive.

Default Parm Order: <None>

HGST Confidential 259

APPENDIX D. CIL COMMANDS

D.232 sata pm

Command Name(s): sata pm

Description: This command is used to changed the interface sleep state sata pm active . Return interface to
active state sata pm partial . Set interface to partial state sata pm slumber . Set interface to slumber state.

Default Parm Order: mode

Parameters:

’ Name \ Description ‘

non

’ mode \ The Mode can be "active", "partial”, or "slumber"” ‘

D.233 sata pm aggressive

Command Name(s): sata pm aggressive

Description: This Command is used to change the hba’s aggressive sleep state sata pm aggressive off . Turn
off HBA aggressive PM sata pm aggressive partial . Turn on HBA aggressive PM to the partial state sata pm
aggressive slumber . Turn on HBA aggressive PM to the slumber state.

Default Parm Order: mode

Parameters:

[Name [Description \

’ mode \ The Mode can be "off", "partial”, or "slumber" ‘

D.234 sata read_port_regs

Command Name(s): sata read_port_regs
Description: This command will read and display the port registers (Status, Error, and Sata Control).

Default Parm Order: <None>

D.235 sata set_auto_tags

Command Name(s): sata set_auto_tags

Description: This command will set whether the driver should automatically choose a free tag for NCQ
commands.

Default Parm Order: state

Parameters:

HGST Confidential 260

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘
[state | Canbe "on", "off", 0, 1 \

D.236 sata set_clear_ncq_err

Command Name(s): sata set_clear_ncqg err

Description: This command will set whether the driver should automatically drop the queue and issue a
read_log_ext to log 0x10 when an error occurs in NCQ.

Default Parm Order: state

Parameters:

[Name [Description \

’ state \ 1 or on to enable, O or off to disable ‘

D.237 sata set_speed

Command Name(s): sata set_speed

Description: input speed rate by speed code.speed codes are as follows 0 : No speed negotiation restriction 1
: 1.5Gbps 2 : 3Gbps 3 : 6Gbps after do this command, you should do "COMRESET".

Default Parm Order: speed

Parameters:

[Name | Description \

| speed [Interface speed \

D.238 sata soft_reset

Command Name(s): sata soft_reset
Description: This command will issue a soft reset by toggling the SRST bit in the control register.

Default Parm Order: <None>

D.239 sata srst

Command Name(s): sata srst
Description: This command will issue a soft reset by toggling the SRST bit in the control register.

Default Parm Order: <None>

HGST Confidential 261

APPENDIX D. CIL COMMANDS

D.240 scsi abort

Command Name(s): scsi abort

Description: This function sends a low-level abort SCSI message to the device. Clearly, this command is
intended for SCSI devices only. See also "scsi abort_tag".

Default Parm Order: <None>

D.241 scsi abort_tag

Command Name(s): scsi abort_tag

Description: This function sends a low-level abort tag SCSI message to the device. Clearly, this command is
intended for SCSI devices only. See also "scsi abort".

Default Parm Order: tagID

Parameters:

[Name | Description \
[tagID | ID tag to abort (0x00 - OxFF) ‘

D.242 scsi clear_queue

Command Name(s): scsi clear_gueue
Description: This command clears all queued tasks from the drive.

Default Parm Order: <None>

D.243 scsi device _reset

Command Name(s): scsi device_reset
" "

Description: Sends a SCSI device reset message to the current target. See also "device rescan”, "scsi reset".

Default Parm Order: <None>

D.244 scsiid _mode

Command Name(s): scsi id_mode

Description: This function changes the IDENTIFY message the initiator uses after a SCSI SELECT. Options
include 0x00 (no identify sent), 0x80 (no disconnects allowed) and 0xCO (disconnects are allowed). Attempting
to use any other mode will return an error.

Default Parm Order: mode

HGST Confidential 262

APPENDIX D. CIL COMMANDS

Parameters:

| Name | Description \
[mode | Options are: 0x00, 0x80, 0xCO \

D.245 scsi ppr_mode

Command Name(s): scsi ppr_mode

Description: This function changes when PPR (Parallel Protocol Request) negotiations will occur. Options
include all (every command), check (after next check status), none (disallow), once (after next command only),
required (if context requires), and target (if initiated by target). Attempting to use any other mode will return an
error See also "scsi ppr_mode target".

Default Parm Order: mode

Parameters:

| Name | Description ‘

| mode | Options are: all/check/none/once/required/target \

D.246 scsi ppr_mode_parms

Command Name(s): scsi ppr_mode_parms
Description: This command sets the desired Parallel Protocol Request (PPR) parameters to use in a 1l sub-
sequent PPR negotiations. It will also force a PPR negotiation to occur on the following selection, either I/O or

microprogramming functions.

Default Parm Order: offset period width ppr_parms

Parameters:
Name Description
offset The offset for synchronous negotiations
period The period for synchronous negotiations
width The width, 1 or 2
ppr_parms | Parallel protocol request parameters

D.247 scsi reset

Command Name(s): scsi reset
" "

Description: This function preforms a SCSI bus reset. See also "device rescan”, "scsi device_reset".

Default Parm Order: <None>

HGST Confidential 263

APPENDIX D. CIL COMMANDS

D.248 scsi sync_mode

Command Name(s): scsi sync_mode

Description: This function changes when synchronous negotiations will occur. Options include all (every
command), check (after next check status), none (disallow), once (after next command only), required (if context
requires), and target (if initiated by target). Attempting to use any other mode will return an error.

Default Parm Order: mode

Parameters:

| Name | Description ‘

[mode | Options are: all/check/none/once/required/target \

D.249 scsi sync_mode_parms

Command Name(s): scsi sync_mode_parms

Description: This command will set the desired synchronous period and offset for use in all subsequent
synchronous negotiations. It will also force a synchronous data transfer request negotiation to occur on the
following selection, either I/O or microprogramming functions.

Default Parm Order: offset period

Parameters:

Name Description

offset | The offset for synchronous negotiations
period | The period for synchronous negotiations

D.250 scsi wide_mode

Command Name(s): scsi wide_mode

Description: This function changes when width negotiations will occur. Options include all (every com-
mand), check (after next check status), none (disallow), once (after next command only), required (if context
requires), and target (if initiated by target). Attempting to use any other mode will return an error.

Default Parm Order: mode

Parameters:

[Name [Description \

’ mode \ Options are: all/check/none/once/required/target ‘

HGST Confidential 264

APPENDIX D. CIL COMMANDS

D.251 scsi wide_mode_parms

Command Name(s): scsi wide_mode_parms

Description: This command will set the desired data width for use in all subsequent wide negotiations. It
will also force a wide data transfer request negotiation to occur on the following selection, either I/O or micropro-
gramming functions. A value of 2 for the width specifies that there should be no forced negotiation.

Default Parm Order: width

Parameters:

[Name | Description ‘

[width [Options are 1 or 2 \

D.252 sop get cdb_iu_type

Command Name(s): sop get cdb_iu_type

Description: This function returns what IU type is currently being used as the default when sending CDBs to
a SOP device.

Default Parm Order: <None>

D.253 sop set cdb_iu_type

Command Name(s): sop set cdb_iu_type

Description: This function sets the default wrapper for CDBs. Any CDBs issued to a SOP device will be sent
as this IU type. Valid types are "limited_command", "command", and "extended_command". "limited_command"
is the default type. The numerical value of the IU type is also accepted.

Default Parm Order: type

Parameters:

| Name | Description \

[type | TheIU type to use as the new default ‘

D.254 transport_cdb get always_on

Command Name(s): transport_cdb get always_on
Description: Returns the current state of the transport_cdb always_on flag.

Default Parm Order: <None>

HGST Confidential 265

APPENDIX D. CIL COMMANDS

D.255 transport_cdb get desc_format

Command Name(s): transport_cdb get desc_format
Description: Returns the current state of the transport_cdb descriptor format flag.

Default Parm Order: <None>

D.256 transport_cdb get pad_boundary

Command Name(s): transport_cdb get pad_boundary
Description: Returns the current state of the transport_cdb padding boundary.

Default Parm Order: <None>

D.257 transport_cdb get padding

Command Name(s): transport_cdb get padding
Description: Returns the current state of the transport_cdb padding flag.

Default Parm Order: <None>

D.258 transport_cdb get protocol

Command Name(s): transport_cdb get protocol

Description: Use this command to return the APT protocol used during a transport command.Either "DMA"
or "PIO" will be returned.

Default Parm Order: <None>

D.259 transport_cdb set always_on

Command Name(s): transport_cdb set always_on
Description: Use this command to turn on the transport_cdb flag for every CDB issued.
Default Parm Order: always_on

Parameters:

| Name | Description \

| always_on | Enable transport cdb with every command ‘

HGST Confidential 266

APPENDIX D. CIL COMMANDS

D.260 transport_cdb set desc_format

Command Name(s): transport_cdb set desc_format

Description: The sns size of the 0xC3 option 3 command defaults to 32 bytes and fixed format. Enable
descriptor sns format with this command.

Default Parm Order: desc_format

Parameters:

| Name | Description \

| desc_format | Enable desc_format \

D.261 transport_cdb set pad_boundary

Command Name(s): transport_cdb set pad_boundary

Description: When padding flag is set, this command defines the padding boundary. Default is 512. The
send/recv buffer will be padded, as will the amount of bytes sent/received.

Default Parm Order: pad_boundary

Parameters:

’ Name \ Description ‘

’ pad_boundary \ Set padding boundary ‘

D.262 transport_cdb set padding

Command Name(s): transport_cdb set padding

Description: Enabling this flag will pad every transport_cdb command to the next 512 bytes. The send/recv
buffer will by padded, as will the amount of bytes sent/received. This functionality is necessary for the Audacious
chip set.

Default Parm Order: padding

Parameters:

’ Name \ Description ‘
’ padding \ Enable padding of DMA cmds ‘

HGST Confidential 267

APPENDIX D. CIL COMMANDS

D.263 transport_cdb set protocol

Command Name(s): transport_cdb set protocol

Description: Use this command to set the APT protocol used during a transport command. Users can give a
value of "DMA" or "PIO".

Default Parm Order: protocol

Parameters:

[Name | Description ‘
’ protocol \ DMA or PIO ‘

D.264 uil count

Command Name(s): uil count

Description: This function returns the number of loaded UIL drivers. For more details about the drivers, uil
list can be used. Also see "uil list".

Default Parm Order: <None>

D.265 il create

Command Name(s): uil create

Description: This function is used to create a new driver instance. If the creation is successful, the driver
is added to the uil list and the uil information is returned. Any parameters given to this function after the driver
name are passed into the driver initialization routine. The initialization parameters vary, some drivers may have

none. Creating multiple instances of a driver works for most drivers. Also see "uil info", "uil list".
Default Parm Order: driver_name ?driver_parms?

Parameters:

Name Description

driver_name Name of driver to create
driver_parms | Optional: Driver parameters

D.266 il get autosense

Command Name(s): uil get autosense

Description: This function returns a 1 if autosense is currently active. Zero is returned otherwise. If the
current driver does not support the disabling of autosense, 1 is always returned. Also see "uil set autosense".

Default Parm Order: <None>

HGST Confidential 268

APPENDIX D. CIL COMMANDS

D.267 il get buffsize

Command Name(s): uil get buffsize
Description: This function returns the memory allocation for the current driver’s internal data buffer.

Default Parm Order: <None>

D.268 il get callback create

Command Name(s): uil get callback create

Description: This function returns the callback mapped to a specific uil command. Callbacks are code seg-
ments that are automatically called whenever a command is executed. Currently supported callbacks are create,
remove and "set index". Also see "uil set callback".

Default Parm Order: <None>

D.269 il get callback remove

Command Name(s): uil get callback remove
Description: This function returns the callback mapped to a specific uil command. Callbacks are code seg-
ments that are automatically called whenever a command is executed. Currently supported callbacks are create,

remove and "set index". Also see "uil set callback".

Default Parm Order: <None>

D.270 il get callback ''set index"

Command Name(s): uil get callback "set index"

Description: This function returns the callback mapped to a specific uil command. Callbacks are code seg-
ments that are automatically called whenever a command is executed. Currently supported callbacks are create,
remove and "set index". Also see "uil set callback".

Default Parm Order: <None>

D.271 il get err_info

Command Name(s): uil get err_info

Description: This function dumps to stdout or to a file the error information returned by ERR_STR_MESSAGE
errInfo call.

Default Parm Order: 2outputfile?

Parameters:

HGST Confidential 269

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘

[outputfile [Optional: File to dump error info to \

D.272 il get filter

Command Name(s): uil get filter
Description: This function returns the filter flag of the current driver, currently only in the ASPI driver.

Default Parm Order: <None>

D.273 il get index

Command Name(s): uil get index

Description: This function returns the index of the currently active UIL driver. The uil info command can
be used in place of this one if more detailed information is required. If the optional ’uil_driver’ is provided, this

function returns the index of uil_driver’ or -1 if not loaded. Also see "uil count", "uil info", "uil list", "uil name",
"uil set index".

Default Parm Order: 2uil_driver?

Parameters:

’ Name \ Description ‘

’ uil_driver \ Optional: The UIL driver to get the index of ‘

D.274 uil get max_xfer_len

Command Name(s): uil get max_xfer_len
Description: This function gets the driver’s max transfer bytes.

Default Parm Order: <None>

D.275 il get speed

Command Name(s): uil get speed

Description: This function gets the interface speed for this driver. It will return an interface type as well as
the speed that it is running at.

Default Parm Order: <None>

D.276 il get timeout

Command Name(s): uil get timeout

HGST Confidential 270

APPENDIX D. CIL COMMANDS

Description: This function gets the default timeout value for all devices. This default timeout value is the
timeout assigned to a device upon a device rescan.

Default Parm Order: <None>

D.277 il get version

Command Name(s): uil get version
Description: This function gets the interface version for this driver.

Default Parm Order: <None>

D.278 il info

Command Name(s): uil info

Description: This function returns a brief description about the current uil driver. Information returned
includes the index of the current driver, the name of the current driver, the version of the driver and the number of
devices that the driver currently has access to. Also see "uil list".

Default Parm Order: 2uilIndex?

Parameters:

’ Name \ Description ‘

’ uilIndex \ Optional: name of UIL index ‘

D.279 il list

Command Name(s): uil list

Description: This function returns a list of the currently installed UIL drivers. Each entry shows the index,
name, and version of the driver. The number of devices connected to each driver is also reported. Also see "uil
info".

Default Parm Order: <None>

D.280 il load

Command Name(s): uil load

Description: This function is used to load a TCL "C" extension that needs access to the UIL. These types
of extensions generally extend the TCL command set with high performance macro functions (such as CSO
operations). One example of this command is used to add the serial commands to TCL. Also see "uil create".

Default Parm Order: driver_name

Parameters:

HGST Confidential 271

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘

| driver_name [Name of driver to load \

D.281 il message

Command Name(s): uil message

Description: This function can be used to send special, non standard messages to a driver. Potential applica-
tions for this including the setting and or checking of internal driver settings. This command is provided as a path
to non standard driver features.

Default Parm Order: message ?uil_index?

Parameters:
Name \ Description
message String message to send to uil

uil_index | Optional: UIL index to send message to

D.282 uil name

Command Name(s): uil name

Description: This function returns the name of the current driver or specified uil driver. This function is
useful for determining which driver is currently running, for conditional code. It is also useful for determining
what drivers are available. For maximum versatility, use this feature only when necessary. Also see "uil info".

Default Parm Order: ?index?

Parameters:

[Name | Description \

| index | Optional: Name of UIL index ‘

D.283 uil remove

Command Name(s): uil remove
Description: This function uninitializes a driver and removes it from the uil list. Also see "uil list".
Default Parm Order: index

Parameters:

[Name [Description \

’ index \ Index of UIL to remove ‘

HGST Confidential 272

APPENDIX D. CIL COMMANDS

D.284 il set autosense

Command Name(s): uil set autosense

Description: This function is used to activate/deactivate "autosense" for the current uil driver. When autosense
is active (the default setting) the driver will automatically aquire / return sense information when a check condition
occurs. Note that some uil drivers operate in autosense mode only and do not allow autosense to be deactivated.
Also see "uil get autosense".

Default Parm Order: ?enable?

Parameters:

| Name | Description \

’ enable \ Optional: 0 for off, 1 for on ‘

D.285 il set callback create

Command Name(s): uil set callback create

Description: This function is used to set a callback for a particular uil command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "create", "remove", and "set index".
Each of these callbacks correspond to the associated uil command. The variable uil_index is set to provide further
information within the callback. Also note that it is generally a good idea to make sure a callback is unset before

setting it yourself. To remove a callback, set it to "". Also see "uil get callback".
Default Parm Order: callback

Parameters:

’ Name \ Description ‘

’ callback \ Code to execute ‘

D.286 il set callback remove

Command Name(s): uil set callback remove

Description: This function is used to set a callback for a particular uil command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "create", "remove", and "set index".
Each of these callbacks correspond to the associated uil command. The variable uil_index is set to provide further
information within the callback. Also note that it is generally a good idea to make sure a callback is unset before

setting it yourself. To remove a callback, set it to "". Also see "uil get callback".
Default Parm Order: callback

Parameters:

HGST Confidential 273

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘

| callback | Code to execute \

D.287 il set callback '"'set index"

Command Name(s): uil set callback "set index"

Description: This function is used to set a callback for a particular uil command. Each time the command is
called, this callback is executed as code. Currently supported callbacks are "create", "remove", and "set index".
Each of these callbacks correspond to the associated uil command. The variable uil_index is set to provide further
information within the callback. Also note that it is generally a good idea to make sure a callback is unset before

setting it yourself. To remove a callback, set it to "". Also see "uil get callback".
Default Parm Order: callback

Parameters:

’ Name \ Description ‘

’ callback \ Code to execute ‘

D.288 il set index

Command Name(s): uil set index, usi

Description: This function sets the current uil driver index. Using this command will retarget subsequent

"non "non non

CDB/ATA commands to the specified driver. Also see "uil count", "uil get index", "uil info", "uil list".
Default Parm Order: index

Parameters:

’ Name \ Description ‘
’ index \ UIL index ‘

D.289 il set loglevel

Command Name(s): uil set loglevel

Description: This function sets the current loglevel for the current UIL. Higher loglevels will return more
verbosity than lower loglevels. This verbosity can be used for anything from getting more information about
executing commands to debugging the drivers themselves. Level 10 is considered to request a maximum level of
verbosity. Note that in some environments, namely Windows, Niagara needs to be run from within a command
prompt to see the outputted messages.

Default Parm Order: level

Parameters:

HGST Confidential 274

APPENDIX D. CIL COMMANDS

’ Name \ Description ‘

| level | Logging level \

D.290 il set speed

Command Name(s): uil set speed

Description: This function sets the interface speed for this driver. Options for ?interface? are scsi, fcal, or
serial.

Default Parm Order: interface speed

Parameters:

| Name Description

interface | Interface type
speed Data xfer speed

D.291 uil set timeout

Command Name(s): uil set timeout
Description: This function sets the command timeout value for all devices. Note that different UIL drivers
support different units for timeout values, not all allow timing to millisecond accuracy. Therefore after setting a

timeout, the actual timeout set is returned.

Default Parm Order: time ?-override_persistent?

Parameters:
Name \ Description
time Timeout in milliseconds
—-override_persistent | Optional: Temporarily override the persistent timeouts set for each command. Use
0 to disable.
-override_persistent | Optional: Temporarily override the persistent timeouts set for each command. Use
0 to disable.

HGST Confidential 275

Appendix E
Serial Commands

E.1 get_serial_list

Command Name(s): get_serial_list

Description: This function returns a list of available serial commands. The function is intended to be used by
TCL programs (such as documentation generators) that need to know the current set of available commands.

Default Parm Order: <No Parameters>

Example:

#print docs for all serial commands
foreach name [get_serial list] {
puts [eval "S$name -help"]

}

See Also: get_cdb_list (page ??), get_ata_list (page??), get_cil_list (page 234)

E.2 sabortCDB

Command Name(s): sabortCDB

Description: This function will send CDB abort command, aborting the CDB command that is currently in
progress. It is used as a last resort when communication sync is lost and cannot be regained.

Default Parm Order: <No Parameters>

Example:
sabortCDB
E.3 scdb

Command Name(s): scdb

Description: This function is used to send a UART?2 cdb frame to the drive. The first ?length? bytes in the
send buffer are used as the cdb to send.

Default Parm Order: ?1ength?

Parameters:

HGST Confidential 276

APPENDIX E. SERIAL COMMANDS

’ Name \ Description ‘
| length [Optional: Length of cdb to send \

Example:

#£fi11l a buffer with an inquiry cdb
buff fill patt send 0 6 0x12 0x00 0x00 0x00 OxFF 0x00

#send a cdb constructed of the first 6

#bytes of the send buffer
scdb 6

E.4 sclose
Command Name(s): sindex

Description: Close the serial port. Useful to allow external programs access to the serial port. Usage: sclose.

Default Parm Order: <No Parameters>

Example:
sclose
E.5 sdelay

Command Name(s): sdelay

Description: This function is used to set the serial comminication timing delay. Slower machines may need
to increase the delay to keep comminication in sync. The delay is set in micro seconds.

Default Parm Order: delay

Parameters:

’ Name \ Description ‘

’ delay \ Length of delay in micro seconds ‘

E.6 secho

Command Name(s): secho

Description: This function requests an echo response from the serial device. The response contains the serial
number of the drive. This function is useful to asserting a good serial connection with the drive.

Default Parm Order: <No Parameters>

HGST Confidential 277

APPENDIX E. SERIAL COMMANDS

Example:

secho

E.7 sget_speed

Command Name(s): sget_speed

Description: This function requests a Get UART Parameters response from the serial device. This function
will parse out the line speed from the return information.

Default Parm Order: <No Parameters>

Example:

sget_speed

E.8 sindex

Command Name(s): sindex
Description: Get/Set the suil device index. Usage sindex ?index?.
Default Parm Order: ?index?

Parameters:

[Name [Description ‘

’ index \ Optional: Optional: The device index you wish to select. ‘

Example:

sindex 1

E.9 sio

Command Name(s): sio

Description: This command allows low level UART communication on a byte-by-byte basis. The send
length and recieve length are specified; then, ?send_length? number of bytes are sent from the send buffer and
Irecv_length? number of bytes are read into the recieve buffer.

Default Parm Order: ?send_length? ?recv_length?

Parameters:

HGST Confidential 278

APPENDIX E. SERIAL COMMANDS

Name \ Description

send_length | Optional: number of bytes to send through UART
recv_length | Optional: number of bytes to recieve through UART

Example:

buff fill patt send 0 2 Oxaa 0x55
sio 2 1

E.10 slip

Command Name(s): slip

Description: This function causes the drive to request LIP if it is a Fibre Channel drive. The drive will send
a response block to the host indicating the command is acknowledged and then call the appropriate function to
request LIP.

Default Parm Order: ?LIP type?

Parameters:

[Name | Description \
| LIP type | Optional: type of LIP requested (F7 or F8) \

Example:

slip
E.11 squery

Command Name(s): squery

Description: This function will send a UART query command to the drive. This command will be used by
the host when it is polling the drive to see if it is ready for the next command.

Default Parm Order: <No Parameters>

Example:

squery
E.12 sread

Command Name(s): sread

HGST Confidential 279

APPENDIX E. SERIAL COMMANDS

Description: This function returns a portion of memory from the current serial device. Information is also
read into the current receive buffer where it can be manipulated further by "buff" commands. Note that, unlike
Serial Debugger, you need to append Ox to all parameters you wish to be in hex.

Default Parm Order: address length ?-dw? ?-dd? ?-qw? ?-transport_cdb? ?-show_status?

Parameters:

Name Description

address Address in memory to read

length Number of bytes to read

—dw Optional: Display data in 16-bit word format

—-dd Optional: Display data in 32-bit double word format
—qw Optional: Display data in 64-bit quad word format

—transport_cdb | Optional: If "-transport_cdb 1", send command as a 0xC3 transport command
—transport_cdb | Optional: If "-transport_cdb 1", send command as a 0xC3 transport command

-show_status Optional: To skip status output append "-show_status 0" to the command
—-show_status Optional: To skip status output append "-show_status 0" to the command
Example:

sread 0x20000 Ox1EOO

See Also: buff dump (page 192), buff save (page 204), buff format (page 199), swrite
(page 284)

E.13 sreadsp

Command Name(s): sreadsp
Description: This function returns the stack pointer location for the current device.
Default Parm Order: <No Parameters>

Example:

sreadsp

E.14 srescan

Command Name(s): srescan

Description: Requests that the current suil performs a device rescan. Note: This skips any device rescan
binds.

Default Parm Order: <No Parameters>

HGST Confidential 280

APPENDIX E. SERIAL COMMANDS

Example:

srescan

E.15 sreset

Command Name(s): sreset

Description: The command initiates a reset on the drive. The drive will send a response block to the host
indicating that the command is acknowledged and then call the appropriate reset function.

Default Parm Order: ?command flags? ?drive type?

Parameters:
Name \ Description
command flags | Optional: command flags that specify the type of reset
drive type Optional: drive type byte
Example:
sreset

E.16 sset_speed

Command Name(s): sset_speed

Description: This function requests a Get UART Parameters response from the serial device, it then modifies
the line speed section, sends a Set UART Parameters request, and changes the host speed to match the new speed.

Default Parm Order: coded_speed ?-quick_scan?

Parameters:

Name \ Description

coded_speed | The coded speed value. See UART3 Specification.
—quick_scan | Optional: quick scan the bus.

Example:

sset_speed

HGST Confidential 281

APPENDIX E. SERIAL COMMANDS

E.17 sspeed

Command Name(s): sspeed

Description: Get/Set the serial speed for suil in bps. It is valid for both serail/serial3 drivers. Usage sspeed

Ispeed?.
Default Parm Order: ?index?

Parameters:

[Name | Description

[index | Optional: The speed in bits per second (bps)

Example:

sspeed 115200

E.18 sstatus

Command Name(s): sstatus
Description: This function is only valid for the serial3 driver.
Default Parm Order: <No Parameters>

Example:

sstatus

E.19 suart2

Command Name(s): suart?2

Description: This function is used to set the serial communication link to UART?2.

Default Parm Order: <No Parameters>

Example:

suart?2

E.20 suart3

Command Name(s): suart3

HGST Confidential

282

APPENDIX E. SERIAL COMMANDS

Description: This function is used to set the serial communication link to UART3. The speed value deter-
mines the line speed that will be used in the new mode. See the UART protocol definition for values.

Default Parm Order: speed

Parameters:

’ Name \ Description ‘
’ speed \ UART speed setting ‘

E.21 suil

Command Name(s): suil

Description: This command sets the UIL target index that serial commands (sread, etc...) will be directed at.
Serial commands have an independent uil setting for convenience purposes. Note that if you are sending CDBs
through the serial port, you should use "uil set index" to set your driver.

Default Parm Order: ?index?

Parameters:

’ Name \ Description ‘

’ index \ Optional: UIL Index (without index, suil returns the current index) ‘

Example:

#Send serial commands to UIL 0

suil 0

#see what are UIL serial commands are being directed to
suil

See Also: uil set index (page 274)

E.22 sversion

Command Name(s): sversion

Description: This function requests that the drive report back to the host the version of the UART interface
it supports. A drive that supports the UART 2 interface will return the Version response block with the version
field set to at least 2, while a drive that does not will either return an error on the transmission (legacy versions) or
return the response block with a different value (future versions). UART 3 devices will return the response block
with a value of at least 5.

Default Parm Order: <No Parameters>

Example:

HGST Confidential 283

APPENDIX E. SERIAL COMMANDS

sversion

E.23 swrite

Command Name(s): swrite

Description: This function is used to write data to memory in the drive. Data can be entered directly as part
of the swrite command or the current send buffer can be used (if no data is specified, the send buffer is used). All
entered parameters (including data) must be preceeded by a Ox if the data is in hex format. The "buff" commands
can be used to assist in pre-buffer setup (such as loading a buffer with contents from a file).

Default Parm Order: address length ?-dw? ?-dd? ?hex data?

Parameters:
Name Description
address Address in memory to read
length Number of bytes to read
—dw Optional: Command line data is in 16-bit word format
—-dd Optional: Command line data is in 32-bit double word format

hex data | Optional: One or more space separated bytes of write data

Example:

#write some data from the command line
swrite 0 1 52

#write multiple bytes from the command line
swrite 0 4 OxAA 0xBB 0xCC 0xDD

#write a 4 byte word from the command line
swrite 0 1 —-dw 0x11223344

#fwrite data from a file

buff load data.bin

swrite 0 2048

See Also: buff load (page201), buff fill (page ??), sread (page279)

E.24 sxfer

Command Name(s): sxfer

Description: This command sends a UART?2 data xfer command block to the drive. The type of data xfer is
defined by the parameters used.

Default Parm Order: >Transfer Bit? ?Status Bit? ?Send Length? ?Recv Length?

Parameters:

HGST Confidential 284

APPENDIX E. SERIAL COMMANDS

Name \ Description

Transfer Bit | Optional: direction of data transfer (0 inbound, 1 outbound)
Status Bit Optional: 1 indicates transfer is for reporting status

Send Length Optional: number of bytes to send

Recv Length Optional: number of bytes to recv

HGST Confidential 285

Index

Additional Helper Serial Commands, 66

ata get, 35, 189

bd, 192
bf, 199
bfb, 194
bff, 194
bfi, 195
bfo, 195
bfp, 196
bfr, 196
bfs, 196
bfsh, 197
bfstr, 197
bfz, 197
bri, 206
bsi, 206

buff adlerchksum, 35, 189

buff checksum, 35, 189
buff compare, 35, 190
buff copy, 35, 190
buff crc, 36, 191

buff diff, 36, 191

buff dump, 36, 192
buff e2e, 36, 193

buff fill byte, 36, 194
buff fill float, 36, 194
buff fill int, 36, 195
buff fill int64, 36, 195
buff fill one, 36, 195
buff fill patt, 36, 196
buff fill rand, 36, 196
buff fill seq, 36, 196
buff fill short, 36, 197
buff fill string, 36, 197
buff fill zero, 36, 197
buff find, 36, 198
buff findstr, 36, 198
buff format, 36, 199

buff get address, 36, 199

buff get count, 36, 200
buff get dsize, 36, 200
buff get ri, 36, 200
buff get si, 36, 200
buff get size, 36, 200
buff gets, 37, 201

buff load, 37, 201

buff peek, 37, 202
buff poke, 37, 202
buff print sgl, 37, 202
buff reset, 37, 203
buff rsa keygen, 37, 203
buff rsa sign, 37, 203
buff rsa verify, 37, 204
buff save, 37, 204
buff set count, 37, 205
buff set dsize, 37, 205
buff set pqi_sgl, 37, 205
buff set ri, 37, 206
buff set si, 37, 206
buff set size, 37, 206

change_definition, 31, 115

chdef, 115
close_zone, 31, 115
console_sync, 37, 207

delay, 66
device count, 37, 207
device create, 37, 207

device get allow_set_when_locked, 37, 208
device get callback create, 37, 208

device get callback lock, 37, 208

device get callback remove, 37, 208

device get callback rescan, 37, 208

device get callback set indexlhyperpage, 38, 209
device get callback unlock, 38, 209

device get index, 38, 209

HGST Confidential

286

INDEX

device get interface, 38, 209

device get last_cmd, 38, 210

device get last_cmd_time, 38, 210
device get read_xfer, 38, 210
device get receive_count, 38, 210
device get reserved, 38, 210

device get send_count, 38, 211
device get timeout, 38, 211

device get xfer_mode, 38, 211
device hbareset, 38, 211

device info, 38, 211

device info blocksize, 38, 212
device info channel, 38, 212

device info codelevel, 38, 213
device info host, 38, 213

device info lun, 38, 213

device info markersize, 38, 214
device info maxlba, 38, 214

device info mdata_inline, 38, 214
device info mdata_size, 39, 215
device info phy_blocksize, 39, 215
device info productid, 39, 215
device info protection, 39, 216
device info protection_location, 39, 216
device info protection_type, 39, 216
device info protocol, 39, 217

device info rto, 39, 217

device info serial, 39, 217

device info serial_asic_version, 39, 218
device info target, 39, 218

device info vendor, 39, 218

device info wwid, 39, 219

device islocked, 39, 219

device list, 39, 219

device lock, 39, 220

device lock serial, 39, 220

device remove, 39, 220

device rescan, 39, 221

device set allow_set_when_locked, 39, 221
device set blocksize, 39, 221

device set callback create, 39, 222
device set callback lock, 40, 222
device set callback remove, 40, 222
device set callback rescan, 40, 223
device set callback set indexlhyperpage, 40, 223
device set callback unlock, 40, 223
device set index, 40, 224

device set markersize, 40, 224
device set maxlba, 40, 224

device set phy_blocksize, 40, 225

device set protocol, 40, 225
device set read_xfer, 40, 225
device set reserved, 40, 226
device set serial, 40, 226
device set timeout, 40, 226
device set xfer_mode, 40, 227
device unlock, 40, 227

device unlock serial, 40, 228
dsi, 224

e6,31, 116
encode, 40, 228
eparse, 40, 228
err_str, 40, 229
esource, 40, 229

fcal abort_task_set, 40, 229
fcal abts, 40, 229

fcal clear_aca, 41, 230

fcal clear_task_set, 41, 230
fcal lip_reset, 41, 230

fcal port_login, 41, 230
fcal process_login, 41, 230
fcal reset, 41, 231

fcal target_reset, 41, 231
fcal term_task, 41, 231
feedback asynccqe, 41, 231
feedback color, 41, 231
feedback default, 41, 232
feedback maxlen, 41, 232
feedback min, 41, 232
feedback pop, 41, 233
feedback push, 41, 233
feedback showatafis, 41, 233
feedback showcdb, 41, 233
feedback showcqe, 41, 234
finish_zone, 31, 117

fmt, 118

format_unit, 31, 118

get_cil_list, 41, 234
get_delay, 66
get_kcq_str, 41, 234
get_poll_count, 67
get_retry_count, 66
get_serial_list, 276
get_stats, 67

init, 41, 234
inq, 119

HGST Confidential

287

INDEX

inquiry, 31, 119
iol0, 31, 120
iol2, 31, 121
iol6, 31, 122
1032, 31, 123
i06, 31, 125

Igsel, 125

Igsns, 126
log_dump, 116
log_select, 31, 125
log_sense, 31, 126

mdsl10, 127

mdsl6, 128

mdsn10, 128

mdsn6, 129
mode_select10, 31, 127
mode_select6, 31, 128
mode_sensel0, 31, 128
mode_sense6, 31, 129

niagara_log_puts, 41, 235

nvme dump_cq, 41, 235

nvme dump_sq, 41, 235

nvme get callback reset, 41, 236
nvme get cq_ids, 42, 236

nvme get last_cid, 42, 236
nvme get last_dword, 42, 236
nvme get last_dword0, 42, 236
nvme get last_dwordl, 42, 237
nvme get last_err_logpage, 42, 237
nvme get last_status, 42, 237
nvme get page_size, 42, 237
nvme get register, 42, 237

nvme get sq_ids, 42, 238

nvme reset, 42, 238

nvme set callback reset, 42, 238
nvme set page_size, 42, 239
nvme set register, 42, 239

open_zone, 31, 130

parse, 42, 239

pcie get config, 42, 240

pcie set config, 42, 240
perfent clicks, 42, 240
perfent count, 42, 241

perfent delay, 42, 241

perfent freq, 42, 241
persistent_reserve_in, 31, 131

persistent_reserve_out, 31, 132
poll_count, 67

pqi dump_iq, 42, 241
pqi dump_oq, 42, 242
pqi get register, 42, 242
pqi set register, 42, 242
pref, 132

prefl6, 133

prefetch, 31, 132
prefetch16, 31, 133
pri, 131

pro, 132

gctl get auto_incr, 42, 243
qctl get ignore_queue_full, 42, 243
qctl get max_depth, 42, 243
qctl get num_queued, 43, 243
qctl get num_waiting, 43, 244
qctl get tag_type, 43, 244

gctl idx_info, 43, 244

qctl recv, 43, 244

qctl recv all, 43, 245

qctl recv tag, 43, 245

gctl send, 43, 245

qgctl set auto_incr, 43, 246
qctl set ignore_queue_full, 43, 246
qctl set max_depth, 43, 246
qctl set next_tag, 43, 247

qctl set tag_type, 43, 247

qctl table_info, 43, 247

qctl tag_info, 43, 248

gmode concurrent, 43, 248
gmode disable, 43, 248
gmode info, 43, 248

gmode pcie, 43, 249

gmode stacked, 43, 249

r10, 134

rl12, 134

rl6, 135

r32, 136

r6, 137

rand, 43, 249

rand addhist, 43, 250
rand close, 44, 250
rand float, 44, 251
rand frange, 44, 251
rand int, 44, 251
rand open, 44, 252
rand range, 44, 252

HGST Confidential

288

INDEX

rand seed, 44, 253

rand showhist, 44, 253
randlba, 44, 254

rcvdg, 146

rd10, 134

rd12, 134

rd16, 135

rd32, 136

rd6, 137

rdbuf, 138

rdbuf32, 139

rdcap, 140

rdcapl6, 141

rdd12, 142

rdlong, 143

rdlong16, 144

rdmap10, 142

read10, 31, 134

read12, 32, 134

read16, 32, 135

read32, 32, 136

read6, 32, 137

read_buffer, 32, 138
read_buffer32, 32, 139
read_capacity, 32, 140
read_capacity 16, 32, 141
read_defect_datal0, 32, 142
read_defect_datal2, 32, 142
read_long, 32, 143
read_long16, 32, 144

reas, 145

reassign_blocks, 32, 145
receive_diagnostic_results, 32, 146
rell0, 147

rel6, 147

releasel0, 32, 147

release6, 32, 147
report_lun, 32, 148
report_supported_opcodes, 32, 148
report_supported_tmf, 32, 149
report_zones, 32, 150
report_zones_old, 32, 151
repsupops, 148

repsuptmf, 149
request_sense, 32, 152
res10, 153

res6, 153

reservel(, 33, 153

reserve6, 33, 153
reset_stats, 67

reset_write_pointer, 33, 154
reset_write_pointer_old, 33, 155
retry_count, 66

rezero, 155

rezero_unit, 33, 155

rlun, 148

sabortCDB, 64, 276
sanitize, 33, 156

sas abort_task_set, 44, 254
sas clear_aca, 44, 254

sas clear_task_set, 44, 254
sas get_pod_address, 44, 255
sas get_sas_address, 44, 255
sas get_speed, 44, 255

sas link_reset, 44, 255

sas lun_reset, 44, 255

sas nexus_reset, 44, 255

sas notify, 44, 256

sas notify_epow, 44, 256
sas phy_reset, 44, 256

sas power_manage, 44, 256
sas query_async_event, 44, 256
sas query_task_set, 44, 257
sas reset, 44, 257

sas set_sas_address, 45, 257
sas set_speed, 45, 257

sata comreset, 45, 258

sata get, 45, 258

sata get active, 45, 258

sata get control, 45, 259
sata get error, 45, 259

sata get status, 45, 259

sata get_auto_tags, 45, 259
sata get_clear_ncq_err, 45, 259
sata get_speed, 45, 259

sata pm, 45, 260

sata pm aggressive, 45, 260
sata read_port_regs, 45, 260
sata set_auto_tags, 45, 260
sata set_clear_ncq_err, 45, 261
sata set_speed, 45, 261

sata soft_reset, 45, 261

sata srst, 45, 261

scdb, 64, 276

scsi abort, 45, 262

scsi abort_tag, 45, 262

scsi clear_queue, 45, 262
scsi device_reset, 45, 262
scsi id_mode, 45, 262

HGST Confidential

289

INDEX

scsi ppr_mode, 45, 263

scsi ppr_mode_parms, 45, 263
scsi reset, 46, 263

scsi sync_mode, 46, 264

scsi sync_mode_parms, 46, 264
scsi wide_mode, 46, 264

scsi wide_mode_parms, 46, 265
sdelay, 64, 277

sec_in_blk, 156

sec_in_byte, 157

sec_out_blk, 158

sec_out_byte, 159

secho, 277

security_protocol_in_block, 33, 156
security_protocol_in_byte, 33, 157
security_protocol_out_block, 33, 158
security_protocol_out_byte, 33, 159

seek10, 33, 160
seek10_64lba, 33, 160
seek6, 33, 161
send_diagnostic, 33, 162
serial CDB, 62

serial stats, 67
set_delay, 66
set_poll_count, 67
set_retry_count, 66
sget_speed, 278

sindex, 277, 278

sio, 67, 278

sk10, 160

sk10_64, 160

sk6, 161

slip, 64, 279

sndd, 162

sns, 152

sop get cdb_iu_type, 46, 265
sop set cdb_iu_type, 46, 265
squery, 64, 279

sread, 279

sreadsp, 280

srescan, 66, 280

sreset, 63, 281
sset_speed, 281

sspeed, 66, 282

sstatus, 65, 282

ssu, 162
start_stop_unit, 33, 162
statistics, 67

suart2, 65, 282

suart3, 65, 282

suart_level, 66

suil, 283

sversion, 63, 283

swrite, 284

sxfer, 64, 284

sync, 163

syncl6, 164
synchronize_cache, 33, 163
synchronize_cachel®6, 33, 164

test_unit_ready, 33, 164

transport_cdb get always_on, 46, 265
transport_cdb get desc_format, 46, 266
transport_cdb get pad_boundary, 46, 266
transport_cdb get padding, 46, 266
transport_cdb get protocol, 46, 266
transport_cdb set always_on, 46, 266
transport_cdb set desc_format, 46, 267
transport_cdb set pad_boundary, 46, 267
transport_cdb set padding, 46, 267
transport_cdb set protocol, 46, 268

tstr, 164

tstrdy, 164

UART, 61

UART 2, 61

UART 3, 63

UART CDB, 62

uil count, 46, 268

uil create, 46, 268

uil get autosense, 46, 268

uil get buffsize, 46, 269

uil get callback create, 46, 269
uil get callback remove, 47, 269
uil get callback set indexlhyperpage, 47, 269
uil get err_info, 47, 269

uil get filter, 47, 270

uil get index, 47, 270

uil get max_xfer_len, 47, 270
uil get speed, 47, 270

uil get timeout, 47, 270

uil get version, 47, 271

uil info, 47, 271

uil list, 47, 271

uil load, 47, 271

uil message, 47, 272

uil name, 47, 272

uil remove, 47, 272

uil set autosense, 47, 273

uil set callback create, 47, 273

HGST Confidential

290

INDEX

uil set callback remove, 47, 273
uil set callback set indexlhyperpage, 47, 274

uil set index, 47, 274
uil set loglevel, 47, 274
uil set speed, 47, 275
uil set timeout, 47, 275

write_long16, 35, 184
write_same, 35, 185
write_samel6, 35, 186
write_same32, 35, 187
writebuf, 181
writebuf32, 182

UlLserial messages, 66 wrlong, 183
um, 165 wrlong16, 184
unit, 162 wrs, 185
unmap, 33, 165 wrsl6, 186
usi, 274 wrs32, 187
wrv, 178
ver, 165 wrv12, 179
verl2, 166 wrvl6, 179
verl6, 167 wrv32, 180

ver32, 168

verify, 33, 165

verify12, 34, 166

verify16, 34, 167

verify32, 34, 168
vu_commit_verify, 34, 169
vu_define_band_type, 34, 170
vu_query_band_information, 34, 170
vu_query_last_verify_error, 34, 171
vu_reset_write_pointer, 34, 172
vu_set_write_pointer, 34, 172
vu_verify_squeezed_blocks, 34, 173

w10, 174

wl2, 175

wl6, 175

w32, 176

wo, 177

wrl0, 174

wrl2, 175

wrl6, 175

wr32, 176

wr6, 177

writel0, 34, 174

writel2, 34, 175

writel6, 34, 175

write32, 34, 176

write6, 34, 177
write_and_verify, 34, 178
write_and_verify12, 35, 179
write_and_verify16, 35, 179
write_and_verify32, 35, 180
write_buffer, 35, 181
write_buffer32, 35, 182
write_long, 35, 183

HGST Confidential 291

	Contents
	Introduction
	Intended Audience
	What This Manual Covers
	Basic Overview Of CIL Features
	Expandability
	Portability
	Quick Survey Of Current Features (Subject To Expansion)

	Using The Graphical User Interface
	Overview Of The Main Window
	Device Selection
	Executing A CDB Command
	Quick CDB Commands

	Buffer Manager
	Buffer Dump
	Buffer Diff
	Buffer Fill

	Download Code
	Format
	Log Bin
	Lock Drives
	Mode Selection
	Super CSO

	Basic Use Of The Command Line Interface
	Introduction
	Basic Command Entry
	Getting Help
	Command Options
	Using Keywords In Place Of Numbers

	Table Of CDB Commands
	Commands Specific To The CIL
	The device command
	The buff Command
	The uil command
	The feedback command
	The randlba Command

	Using The Serial Extension
	Introduction
	Basic Architecture
	Integratability
	Buffers
	Numbers and Variables
	CIL support

	Connecting Niagara to a drive
	Commands
	UART
	UART 2
	UART 2 CDB Support
	UART 3
	UART2 & UART3 Commands
	UART2 Only Commands
	UART3 Only Commands
	Additional Helper Serial Commands

	Advanced UART Commands
	Driver Parameters
	Supported UIL Messages
	sio

	Tips and Tricks

	Brief Introduction To TCL
	TCL Variables
	Table Of TCL Commands
	TCL Syntax
	Running TCL Commands From A File
	Multiple Statements Per Line
	Comments
	Control Flow Commands
	The if Command
	The for Command
	The while Command
	The foreach Command
	The switch Command

	Defining Procedures (Functions)
	Arrays
	Lists
	String Manipulation
	File Operations
	Introduction To The TK gui extension

	Error Handling Techniques And Variables
	Introduction
	General and CDB Errors

	Global Variables
	ec
	err
	sns

	The Local Variable: cdberr
	Restoring default behavior
	Why is cdberr local?
	Some Examples

	Using catch
	Choosing Between cdberr and catch

	Random Number Generation
	Introduction
	Basic Use
	Using Channels
	Using Histograms

	Command Queueing
	Introduction
	General Usage Stacked Mode
	Capturing Data
	Concurrent Mode

	Using Hardware Data Generation / Compare
	Introduction
	Understanding iTech Performance
	Changing The Transfer Mode
	Suppressing Card to Memory Transfers
	Returning to a Default State
	Example

	Startup Scripts
	Included Startup Scripts
	checksum
	debug_puts
	do
	device_ops
	drive
	endian
	file
	hdc
	identify
	Mode_Page_Parms
	model_number
	serial
	sns_tools
	uartmode

	Expanding The TCL GUI
	Working with Quick Buttons
	The Action List
	Preference Variables
	Special Global Variables

	TCL Code Examples
	Random Read/Write/Verify Application
	Basic Sequential Read Loop
	Basic Random Read Loop
	Creating A Procedure
	Adding LBA Range and Boosting Performance
	Adding Writes And Compare
	Adding A TK GUI Front End

	Reading Random Blocks From Every Drive On The Loop

	EC Error Codes
	SCSI Commands
	 change_definition
	 close_zone
	 e6
	 finish_zone
	 format_unit
	 inquiry
	 io10
	 io12
	 io16
	 io32
	 io6
	 log_select
	 log_sense
	 mode_select10
	 mode_select6
	 mode_sense10
	 mode_sense6
	 open_zone
	 persistent_reserve_in
	 persistent_reserve_out
	 prefetch
	 prefetch16
	 read10
	 read12
	 read16
	 read32
	 read6
	 read_buffer
	 read_buffer32
	 read_capacity
	 read_capacity16
	 read_defect_data10
	 read_defect_data12
	 read_long
	 read_long16
	 reassign_blocks
	 receive_diagnostic_results
	 release10
	 release6
	 report_lun
	 report_supported_opcodes
	 report_supported_tmf
	 report_zones
	 report_zones_old
	 request_sense
	 reserve10
	 reserve6
	 reset_write_pointer
	 reset_write_pointer_old
	 rezero_unit
	 sanitize
	 security_protocol_in_block
	 security_protocol_in_byte
	 security_protocol_out_block
	 security_protocol_out_byte
	 seek10
	 seek10_64lba
	 seek6
	 send_diagnostic
	 start_stop_unit
	 synchronize_cache
	 synchronize_cache16
	 test_unit_ready
	 unmap
	 verify
	 verify12
	 verify16
	 verify32
	 vu_commit_verify
	 vu_define_band_type
	 vu_query_band_information
	 vu_query_last_verify_error
	 vu_reset_write_pointer
	 vu_set_write_pointer
	 vu_verify_squeezed_blocks
	 write10
	 write12
	 write16
	 write32
	 write6
	 write_and_verify
	 write_and_verify12
	 write_and_verify16
	 write_and_verify32
	 write_buffer
	 write_buffer32
	 write_long
	 write_long16
	 write_same
	 write_same16
	 write_same32

	CIL Commands
	 ata get
	 buff adlerchksum
	 buff checksum
	 buff compare
	 buff copy
	 buff crc
	 buff diff
	 buff dump
	 buff e2e
	 buff fill byte
	 buff fill float
	 buff fill int
	 buff fill int64
	 buff fill one
	 buff fill patt
	 buff fill rand
	 buff fill seq
	 buff fill short
	 buff fill string
	 buff fill zero
	 buff find
	 buff findstr
	 buff format
	 buff get address
	 buff get count
	 buff get dsize
	 buff get ri
	 buff get si
	 buff get size
	 buff gets
	 buff load
	 buff peek
	 buff poke
	 buff print sgl
	 buff reset
	 buff rsa keygen
	 buff rsa sign
	 buff rsa verify
	 buff save
	 buff set count
	 buff set dsize
	 buff set pqi_sgl
	 buff set ri
	 buff set si
	 buff set size
	 console_sync
	 device count
	 device create
	 device get allow_set_when_locked
	 device get callback create
	 device get callback lock
	 device get callback remove
	 device get callback rescan
	 device get callback "set index"
	 device get callback unlock
	 device get index
	 device get interface
	 device get last_cmd
	 device get last_cmd_time
	 device get read_xfer
	 device get receive_count
	 device get reserved
	 device get send_count
	 device get timeout
	 device get xfer_mode
	 device hbareset
	 device info
	 device info blocksize
	 device info channel
	 device info codelevel
	 device info host
	 device info lun
	 device info markersize
	 device info maxlba
	 device info mdata_inline
	 device info mdata_size
	 device info phy_blocksize
	 device info productid
	 device info protection
	 device info protection_location
	 device info protection_type
	 device info protocol
	 device info rto
	 device info serial
	 device info serial_asic_version
	 device info target
	 device info vendor
	 device info wwid
	 device islocked
	 device list
	 device lock
	 device lock serial
	 device remove
	 device rescan
	 device set allow_set_when_locked
	 device set blocksize
	 device set callback create
	 device set callback lock
	 device set callback remove
	 device set callback rescan
	 device set callback "set index"
	 device set callback unlock
	 device set index
	 device set markersize
	 device set maxlba
	 device set phy_blocksize
	 device set protocol
	 device set read_xfer
	 device set reserved
	 device set serial
	 device set timeout
	 device set xfer_mode
	 device unlock
	 device unlock serial
	 encode
	 eparse
	 err_str
	 esource
	 fcal abort_task_set
	 fcal abts
	 fcal clear_aca
	 fcal clear_task_set
	 fcal lip_reset
	 fcal port_login
	 fcal process_login
	 fcal reset
	 fcal target_reset
	 fcal term_task
	 feedback asynccqe
	 feedback color
	 feedback default
	 feedback maxlen
	 feedback min
	 feedback pop
	 feedback push
	 feedback showatafis
	 feedback showcdb
	 feedback showcqe
	 get_cil_list
	 get_kcq_str
	 init
	 niagara_log_puts
	 nvme dump_cq
	 nvme dump_sq
	 nvme get callback reset
	 nvme get cq_ids
	 nvme get last_cid
	 nvme get last_dword
	 nvme get last_dword0
	 nvme get last_dword1
	 nvme get last_err_logpage
	 nvme get last_status
	 nvme get page_size
	 nvme get register
	 nvme get sq_ids
	 nvme reset
	 nvme set callback reset
	 nvme set page_size
	 nvme set register
	 parse
	 pcie get config
	 pcie set config
	 perfcnt clicks
	 perfcnt count
	 perfcnt delay
	 perfcnt freq
	 pqi dump_iq
	 pqi dump_oq
	 pqi get register
	 pqi set register
	 qctl get auto_incr
	 qctl get ignore_queue_full
	 qctl get max_depth
	 qctl get num_queued
	 qctl get num_waiting
	 qctl get tag_type
	 qctl idx_info
	 qctl recv
	 qctl recv all
	 qctl recv tag
	 qctl send
	 qctl set auto_incr
	 qctl set ignore_queue_full
	 qctl set max_depth
	 qctl set next_tag
	 qctl set tag_type
	 qctl table_info
	 qctl tag_info
	 qmode concurrent
	 qmode disable
	 qmode info
	 qmode pcie
	 qmode stacked
	 rand
	 rand addhist
	 rand close
	 rand float
	 rand frange
	 rand int
	 rand open
	 rand range
	 rand seed
	 rand showhist
	 randlba
	 sas abort_task_set
	 sas clear_aca
	 sas clear_task_set
	 sas get_pod_address
	 sas get_sas_address
	 sas get_speed
	 sas link_reset
	 sas lun_reset
	 sas nexus_reset
	 sas notify
	 sas notify_epow
	 sas phy_reset
	 sas power_manage
	 sas query_async_event
	 sas query_task_set
	 sas reset
	 sas set_sas_address
	 sas set_speed
	 sata comreset
	 sata get
	 sata get active
	 sata get control
	 sata get error
	 sata get status
	 sata get_auto_tags
	 sata get_clear_ncq_err
	 sata get_speed
	 sata pm
	 sata pm aggressive
	 sata read_port_regs
	 sata set_auto_tags
	 sata set_clear_ncq_err
	 sata set_speed
	 sata soft_reset
	 sata srst
	 scsi abort
	 scsi abort_tag
	 scsi clear_queue
	 scsi device_reset
	 scsi id_mode
	 scsi ppr_mode
	 scsi ppr_mode_parms
	 scsi reset
	 scsi sync_mode
	 scsi sync_mode_parms
	 scsi wide_mode
	 scsi wide_mode_parms
	 sop get cdb_iu_type
	 sop set cdb_iu_type
	 transport_cdb get always_on
	 transport_cdb get desc_format
	 transport_cdb get pad_boundary
	 transport_cdb get padding
	 transport_cdb get protocol
	 transport_cdb set always_on
	 transport_cdb set desc_format
	 transport_cdb set pad_boundary
	 transport_cdb set padding
	 transport_cdb set protocol
	 uil count
	 uil create
	 uil get autosense
	 uil get buffsize
	 uil get callback create
	 uil get callback remove
	 uil get callback "set index"
	 uil get err_info
	 uil get filter
	 uil get index
	 uil get max_xfer_len
	 uil get speed
	 uil get timeout
	 uil get version
	 uil info
	 uil list
	 uil load
	 uil message
	 uil name
	 uil remove
	 uil set autosense
	 uil set callback create
	 uil set callback remove
	 uil set callback "set index"
	 uil set index
	 uil set loglevel
	 uil set speed
	 uil set timeout

	Serial Commands
	 get_serial_list
	 sabortCDB
	 scdb
	 sclose
	 sdelay
	 secho
	 sget_speed
	 sindex
	 sio
	 slip
	 squery
	 sread
	 sreadsp
	 srescan
	 sreset
	 sset_speed
	 sspeed
	 sstatus
	 suart2
	 suart3
	 suil
	 sversion
	 swrite
	 sxfer

	Index

